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Abstract

Many vital eukaryotic cellular functions require the cell to respond to a directional gradient of a

signaling molecule. The first two steps in any eukaryotic chemotactic/chemotropic pathway are

gradient detection and cell polarization. Like many processes, such chemotactic and chemotropic

decisions are made using a relatively small number of molecules and are thus susceptible to

internal and external fluctuations during signal transduction. Large cell-to-cell variations in the

magnitude and direction of a response are therefore possible and do, in fact, occur in natural sys-

tems. In this work we use three-dimensional probabilistic modeling of a simple gradient sensing

pathway to study the capacity for individual cells to accurately determine the direction of a gra-

dient, despite fluctuations. We include a stochastic external gradient in our simulations using a

novel gradient boundary condition modeling a point emitter a short distance away. We compare

and contrast three different variants of the pathway, one monostable and two bistable. The sim-

ulation data show that an architecture combining bistability with spatial positive feedback permits

the cell to both accurately detect and internally amplify an external gradient. We observe strong

polarization in all individual cells, but in a distribution of directions centered on the gradient. Polar-

ization accuracy in our study was strongly dependent upon a spatial positive feedback term that

allows the pathway to trade accuracy for polarization strength. Finally, we show that additional

feedback links providing information about the gradient to multiple levels in the pathway can help

the cell to refine initial inaccuracy in the polarization direction.

1 Introduction

Chemotaxis and chemotropism in response to a signaling gradient are fundamental aspects of

eukaryotic cellular physiology [1, 2]. Eukaryotic cells are thought to detect and polarize along

even a shallow gradient using time integration of the noisy concentration difference across the cell

combined with an ultrasensitive response [1]. Determining the capacity for eukaryotic pathways

to extract information from signaling gradients in the environment is important for quantitatively

understanding many complex developmental processes [3].

The Saccharomyces cerevisiae mating pathway serves as a model system for eukaryotic po-

larization. Haploid yeast sense nearby cells of the opposite mating type by detecting a pheromone
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gradient and then polarize in the direction of the gradient before forming a mating projection in an

attempt to mate with the partner. For a review, see [4]. Experiments monitoring individual yeast

cells in an artificial gradient show that they polarize with a broad distribution of directions cen-

tered on the gradient (see for example Figure 1H in [5] and also [6–8]). As the projection grows

it gradually refines its direction to be aligned more accurately with the gradient, which is thought

to be a process distinct from choosing the initial direction. It is also observed that under nonsat-

urating pheromone conditions the decision to polarize or not is bimodal, i.e., some yeast polarize

and some do not. The bistable nature of the decision to polarize is well characterized [9, 10], but

the probability distribution of the initial polarization direction currently has not been theoretically

studied.

Polarization of a cell along a gradient involves two, possibly interconnected, processes. First,

the cell must detect the direction of the gradient and create an internal gradient of an activated

signaling molecule aligned to the external one. Second, the cell must significantly amplify the

internal gradient relative to the weak external one. In yeast cells for example, Maeder et al. [11]

have shown that an internal gradient of Fus3 is created in response to pheromone stimulation

centered at the mating projection. For a recent review of the mechanisms of cell polarization in

yeast cells, see [12]. Mathematical modeling has been used to successfully study cell polarization

for many years, see [13], and many different mathematical and computational methods have been

applied to the problem. For a detailed comparison of the advantages and disadvantages of the

various methods of modeling cell polarization, see [14].

Many deterministic partial differential equation (PDE) models have shown that positive feed-

back loops can sense a gradient and orient a cell along an axis of polarization. In a modeling

study of yeast bud site selection, it was shown that an autocatalytic feedback loop involving ac-

tive Cdc42, Cdc24, and Bem1 results in formation of a unique site of polarization [15]. Recently,

Chou et al. studied the ability of a polarization site to adjust its location in response to a change

in the input gradient [16]. They found that multiple interconnected positive and negative feedback

loops can generate a variety of dynamics, including polarization sites that track a gradient. Local

excitation, global inhibition triggered excitable networks have also been shown to be capable of

polarizing along a gradient, in the case of Dictyostelium discoideum chemotaxis [17, 18]. How-

ever, all of the above studies were performed using deterministic simulations, and as such do not
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provide insight into the variability of behavior in individual cells, only the population average.

Many experimental studies have shown that cell-to-cell variability in a population does in fact

give rise to important biological phenomena [19–24]. Stochastic models are thus typically em-

ployed to theoretically study the probabilistic nature of individual cells [25–30]. Altschuler et al.

showed that positive feedback in stochastic, spatial models can give rise to switch-like behavior in

time and space even without spatial cues [31]. When the density of signaling molecules exceeds a

threshold, clusters of activated signaling molecules develop causing a transition from an “off” state

to an “on” state [32, 33]. In a critical range of concentrations, areas of the membrane with a high

density emerge during the “on” state, effectively forming clusters. These clusters define the po-

larization. Similar behavior in which biochemical networks transition between distinct phenotypic

states has been thoroughly studied in well-stirred (non-spatial) systems exhibiting bistability un-

der the framework of stochastic dynamical systems theory, e.g., [34–46]. Polarity establishment,

with or without a gradient, in stochastic reaction-diffusion systems can also be considered a result

of bistability in the dynamical system [47–50]. Wave pinning is another form of spatial resolved

bistability [51].

Internal amplification of an external gradient is a key outcome of polarization. In a one-

dimensional model of yeast polarization, Lawson et al. studied polarization of Spa2 in response

to a deterministic Cdc42a gradient [52]. They identified a spatial amplification effect, in which the

stochastic model predicted a sharper internal gradient relative to the deterministic model. Noise

caused the polarization site to fluctuate and the ensemble average of the stochastic model recapit-

ulated the deterministic results. Their results depend upon a spatial positive feedback, ascribed to

F-actin filaments. Previous evidence also suggests that F-actin structure is one element providing

the spatial positive feedback during yeast polarization [53].

Although there has been some work on determining the absolute accuracy with which a cell

can sense a gradient [54, 55], no work has yet been done to determine the accuracy of sensing

motifs at the level of individual cells. Here, we present a study of the individual cell-to-cell variability

in polarization direction produced by a model of cell polarization. We study the initial step in which

the cell decides where the site of polarity will be located. We are interested in the distribution

of decisions that cells make in their initial guess, before any adjustments are made. We use

a three-dimensional model of a cell and a spatial, stochastic modeling method known as the
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reaction-diffusion master equation (RDME) to account for probabilistic reactions and diffusion.

The kinetic model consists of a membrane bound ligand receptor coupled to a phosphorylation

cascade. We include accurate stochastic fluctuations in the ligand gradient modeled as a nearby

point source using a new constant gradient boundary condition. We show that a bistable circuit

architecture is key to achieving high amplification of shallow gradients, but that there is a tradeoff

with respect to the ability of the circuit to accurately select the direction. All individual cells achieve

high amplification of the external gradient, but the accuracy of polarizing along the gradient varies.

The strength of the spatial positive feedback is a critical parameter in allowing sharp amplification

in the bistable model.

2 Models and Methods

2.1 Spatial model

Here we describe the spatial organization of our polarization model. The simulation volume (see

Fig 1a for a diagram) consists of a diffusion volume containing a point source of a ligand (L). L

is produced with a rate of 865 molecules s−1, which is typical of a single yeast cell’s pheromone

excretion rate [56], and diffuses with a diffusion constant of D=50µm2 s−1. Starting at zero concen-

tration of L, we numerically solve the time dependent diffusion partial differential equations (PDEs)

for the diffusion volume. We use a linear gradient boundary condition to approximate an infinite

diffusion volume (see Text S1 for details). We integrate until t=30 s and then stop the simulation to

obtain the gradient produced by a cell shortly after signal initiation.

Embedded within the diffusion volume is a reaction volume containing the three-dimensional

model of the responding cell. The origin of the reaction volume is (0,0,0) and the location of the

point source is (-0.5,-0.5,-0.5), where all units are in µm. The reaction volume is a cube 2.5µm on

each side. The reaction volume is further subdivided into a cubic lattice with each subvolume in

the lattice having an edge length of 50 nm, resulting in a 50x50x50 lattice. For each subvolume

on the boundary of the reaction volume, we calculate the mean concentration of L from the final

state of the PDE simulation of the diffusion volume and this value becomes the parameter for

the constant gradient boundary condition used in the spatial stochastic simulations (see Text S1).

The boundary condition establishes and maintains the gradient, including the correct stochastic
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Fig 1: Diagram of the simulated system. (a) The simulation volume is composed of a diffusion volume
in which the diffusion gradient of a ligand from a point source is calculated deterministically and a reaction
volume in which both reaction and diffusion of the ligand and biomolecules are calculated stochastically.
(b) A schematic of the processes that occur within the reaction volume. The reaction volume has three
separate regions in which each molecule has distinct reaction and diffusion properties: the extracellular
region, the plasma membrane, and the cytoplasm. Ligand (L) is confined to the extracellular space and can
bind with a receptor (R) in the plasma membrane to form a receptor-ligand complex (RL). RL can trigger
an autophosphorylation cascade of kinase (K) to the singly (Kp) and doubly (Kpp) phosphorylated states.
Phosphatase (P) removes a single phosphate group from an activated kinase. See text for details.

fluctuations, in the reaction volume during the course of the simulation. The gradient across the

cell goes from 16.8 nM to 12.2 nM, which is within the range required for efficient mating between

yeast cells [57].

Within the reaction volume the diffusion and reaction properties of the subvolumes are manip-

ulated to construct a physical model of a cell, including extracellular, membrane associated, and

cytoplasmic subvolumes [58]. See Fig 1b for a schematic. The cell model is centered in the reac-

tion volume and is spherical like a typical haploid yeast cell, but we have scaled the cell size down

from a diameter of ∼4µm to 2µm for computational efficiency. The outer region of the reaction

volume forms the extracellular space. A minimum distance of 5 subvolumes separates the bound-

ary from the membrane of the cell. This distance is sufficient to allow any artifacts in the variance

of L from the constant gradient boundary conditions to dissipate (see Text S1 for details). The

spherical membrane associated region is on average 2 subvolumes thick and represents both the

plasma membrane and also nearby extracellular and cytoplasmic space, to allow modeling of the
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interaction of molecules in the plasma membrane and other regions. The interior of the spherical

membrane shell contains the cytoplasmic region.

Ligand (L) molecules can diffuse in both the extracellular and membrane associated regions

with D=50 µm2 s−1. When an L molecule is in the same membrane associated subvolume as a re-

ceptor (R) molecule a reaction can occur forming a receptor-ligand complex (RL). Likewise, kinase

(K) molecules diffusing freely with D=5.0µm2 s−1 in the membrane associated region can be phos-

phorylated into the singly (Kp) or doubly phosphorylated state (Kpp) by RL, Kp, or Kpp in the same

subvolume and thus become recruited to the plasma membrane with slower D=0.005 µm2 s−1

(this value is varied later in the study). Phosphatase (P) molecules likewise diffuse freely in the

membrane associated subvolumes with D=5.0µm2 s−1 dephosphorylating Kp and Kpp molecules

recruited to the plasma membrane.

2.2 Coordinate systems

To analyze the polarization on the membrane of the cell in response to the ligand gradient, we use

two different coordinate systems. Fig 2a shows the cell in a spherical projection. The vector ~r is the

location of the point on the membrane relative to the center of the cell. The first coordinate system

uses the polar coordinate θ to specify the location of ~r in the x-y plane, which varies between −π

to π, and the z position of ~r (see ~r1 in Fig 2a). An equirectangular projection of this coordinate

system is used to show distributions on the membrane. Fig 2b shows such a projection of the

ligand gradient at the membrane in the absence of reactions.

The second coordinate system is an order parameter Ω, which follows concentration of L. The

gradient in the cell follows the diagonal vector from (0,0,0) to (2.5,2.5,2.5). The angle the vector

~r makes with this diagonal is called Ω (see ~r2 in Fig 2a). All ~r vectors with the same Ω form a

circle around the diagonal and by symmetry have the same L concentration in the gradient. Ω

is 0 when the vector is aligned along the gradient direction and π when the alignment is exactly

opposite. Fig 2c shows the concentration of L in the membrane associated subvolumes according

to Ω, again in the absence of reactions.
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Fig 2: Coordinate systems used in the analyses. (a) A spherical projection of the modeled cell. The
vector ~r1 (the solid red line) goes from the center of the cell to a point on the membrane. The angle of
the projection of this vector on the x-y plane is labeled θ, which varies from −π to π. The z coordinate
of ~r1 is used along with θ to make equirectangular projections of the membrane surface. An alternate
coordinate system uses the angle Ω that the vector, ~r2 (the solid blue line), makes with the diagonal vector
from (0,0,0) to (2.5,2.5,2.5), which follows the gradient. Subvolumes with the same Ω have the same ligand
concentration in the gradient. Ω ranges from 0 in the highest concentration region to π in the lowest. (b)
Equirectangular projection of the ligand concentration in the membrane subvolumes. (c) Ω vs mean ligand
concentration for the membrane subvolumes.

Table 1: Kinetic Equations
# Models Reaction Const. Model I Model II Model III

ODE CME ODE CME ODE CME
1 I,II,III RL→ R + L c5

∗ 0.01 4.0×10−3 10 8.0×10−3 10 8.0×10−3

2 I,II,III K + K→ K + Kp 2c1† 0.01 4.0×10−5 var 8.0×10−5 var 8.0×10−5

3 I,II,III Kp + K→ Kp + Kp 2c2† 0.12 8.0×10−5 var 2.32×10−4 var 2.32×10−4

4 I,II,III P + Kp→ P + K c0
† 1 1.0×10−3 5 4.0×10−3 5 4.0×10−3

5 I,II,III R + L→ RL c4
† 1 8.0×10−3 10 8.0×10−3 10 8.0×10−3

6 I,II,III RL + K→ RL + Kp c6
† 1 1.0×10−4 0.1 8.0×10−5 0.1 8.0×10−5

7 II,III K + Kp→ K + Kpp c1
† – – var 4.0×10−5 var 4.0×10−5

8 II,III Kp + Kp→ Kp + Kpp c2
† – – var 1.16×10−4 var 1.16×10−4

9 II,III Kpp + K→ Kpp + Kp 2c3
† – – 10 8.0×10−3 10 8.0×10−3

10 II,III Kpp + Kp→ Kpp + Kpp c3
† – – 5 4.0×10−3 5 4.0×10−3

11 II,III P + Kpp→ P + Kp 2c0
† – – 10 8.0×10−3 10 8.0×10−3

12 III RL + Kp→ RL + Kpp c7
† – – – – 0.01 8.0×10−6

∗units=dimensionless (ODE), s−1 (CME); †units=dimensionless (ODE), molecule−1s−1 (CME)

2.3 Kinetic models

We present simulations and analyses of three kinetic models in this study. All three models are

variants of the phosphorylation cascade shown schematically in Fig 1, similar to that used in pre-

vious studies [49, 50]. There are three kinase states in the system: unphosphorylated (K), singly

phosphorylated (Kp) and doubly phosphorylated (Kpp). The total concentration of the kinases is

kept constant. The kinases of the cascade positively regulate each other through phosphoryla-
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Table 2: Initial Concentrations
Species Model I Models II and III

ODE† CME∗ ODE† CME∗

K 1 64 1 64
Kp 0 0 0 0

Kpp – – 0 0
P 0.25 16 0.25 16
R 1.6 400 1.6 100
L 2 var 4 var

RL 0 0 0 0
†units=dimensionless
∗units=molecules/(2.5×2.5×2.5µm3)

tion and are negatively regulated via phosphatases that dephosphorylate Kp and Kpp. Sensitivity

of the cascade to the ligand is provided by the receptor-ligand complex, which is also able to

phosphorylate the kinases. All of the reactions are shown in Table 1.

We carried out deterministic analyses of the three models to determine their stability, by solving

the steady states for the systems of ordinary differential equations (ODEs). If the steady state

solution has only one physically relevant solution, the system is considered to be monostable, i.e.,

it has only one fixed point. As a result the system exists in only one stable steady state. If the

solution gives three physically relevant solutions, it has three fixed points, two of those are stable

steady state solutions and the third is an unstable state. Such a system is termed bistable. We will

call the state with low concentration of phosphorylated kinase (Kp+Kpp) the “off” state and that

with a high concentration the “on” state.

We also carried out a well-stirred stochastic analysis of each model using the chemical master

equation (CME; see Text S1). A CME based analysis can also be used to determine mono- or

bistability, but in this case one obtains more information than just the fixed points. We performed

stochastic simulations to obtain the stationary probability density functions (PDFs) of each species.

If the system has a unimodal distribution, it is monostable whereas, if it has a bimodal distribution,

it is bistable. The stochastic simulations also give the switching times between the two meta-stable

states in the case of a bistable distribution.

Table 1 gives the parameter values used in the various models and Table 2 gives the initial con-

ditions. For simplicity during the ODE analyses, the rates and concentrations are nondimension-

alized relative to the Model I dephosphorylation reaction and kinase concentration, respectively.

The rates for ODE Models II and III were optimized for bistability.
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Model I. The first model we consider is Model I listed in Table 1. The kinases in this model exist

in only two forms: K and Kp. The rate equations for K and Kp as obtained from these reactions

are as follows:

dK

dt
= −2c1K·K − 2c2Kp·K + c0P ·Kp− c6RLss·K, (1)

dKp

dt
= 2c1K·K + 2c2Kp·K − c0P ·Kp+ c6RLss·K. (2)

RLss is the steady state concentration of RL complex and is obtained by setting the following rate

equation to zero:
dRL

dt
= c4(R0 −RL)(L0 −RL)− c5RL, (3)

where R0 and L0 are initial concentrations of the receptor and the ligand, respectively. Setting Eqs

(1) and (2) to zero yields

Kp =
2c1K

2 + c6RLss·K
c0P − 2c2K

. (4)

Substituting Kp=1-K, P=0.25 and RLss as obtained from Eq. (3) one obtains,

K =
16(c1 − c2)

−c0 − 8c2 − 4c6RLss+
√

32c0(c1 − c2) + (c0 + 8c2 + 4c6RLss)2
, (5)

which has only one positive solution. Thus, there is only one fixed point for K and Kp and the

system is monostable. When Kp is plotted against ligand concentration, we see that the fraction of

Kp increases smoothly with increasing ligand concentration, as shown in Fig 3a. This continuous

increase in phosphorylated kinase concentration with increasing ligand concentration is also an

indication of a monostable state. In biological terms, there is a graded response of the fraction of

phosphorylation as ligand concentration is increased.

In the solution for the stationary PDF of the stochastic model, only a single peak exists. The

mean of the PDF shifts as the ligand concentration increases, as shown in Fig 3b for three different

ligand concentrations. The CME-based stochastic simulations show the same graded response to

increased ligand as the deterministic model. Individual trajectories fluctuate about the fixed point,

shown in Fig S1.
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Fig 3: Stability properties of Model I. (a) A plot of the fraction of phosphorylated kinases vs ligand
concentration from the deterministic solution. (b) Stationary probability density of fraction of phosphorylated
kinases obtained from 100 independent stochastic simulations of Model I. Ligand copy numbers are 0
(blue), 100 (yellow), 200 (green) and the mean fraction of phosphorylated kinases for the three ligand
concentrations are 0.14, 0.46 and 0.59 respectively.

Model II. The second model we analyze builds upon Model I, but adds a doubly phosphorylated

state to the kinase (Kpp). The addition of the third kinase state in the model introduces new

reactions that create Kpp from Kp and dephosphorylate Kpp back into Kp, see Table 1. The rate

equations for kinases in this system are:

dK

dt
= c0P ·Kp− 2(c1K + c2Kp+ c3Kpp)K − c6RLss·K,

dKp

dt
= (c1K + c2Kp+ c3Kpp)(2K −Kp)− c0P ·Kp+ 2c0P ·Kpp+ c6RLss·K,

dKpp

dt
= (c1K + c2Kp+ c3Kpp)Kp− 2c0P ·Kpp. (6)

We can carry out deterministic analysis similar to that for Model I. Substituting RLss into Eq. (6)

and setting it to zero give us steady state solutions for K, Kp, and Kpp. For a small region of the

parameter space three solutions exist, two of which are stable fixed points and one is an unstable

fixed point, which means that the system in this regime in bistable. The remaining part where only

one solution exists is the monostable regime. The various regions of the c1 vs c2 parameter space

are shown in Fig 4a. All our simulations and analyses take place in the bistable regime, where we

can efficiently simulate many switches back and forth between the “off” and “on” states.
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Fig 4: Stability properties of Models II and III. Parameter space of autophosphorylation rate constants
c1 and c2. (a) The monostable and bistable regions of Model II. (b) The monostable and bistable regions
of Model III. The two marked points show the parameters selected for studying the bistable system in the
stochastic models.

Stochastic simulation of Model II in the bistable regime confirms that the system is bistable in

the well-stirred CME. Fig S2 shows representative trajectories and PDFs from stochastic simula-

tions at different ligand concentrations. It is clear from the trajectories that the system is bistable

when there is no ligand present, even though the stationary probability for the “on” state is low.

The system makes short excursions to the “on” state. As the ligand concentration increases, the

amount of time spent in the “on” state increases with a corresponding decrease in the duration
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of the “off” events. But, in contrast to the graded response of the deterministic model, individual

trajectories are always in either the “off” or “on” state. The systems spend no appreciable time

in the intermediate region. In a population of cells this would correspond to heterogeneity in the

population, with some cells “on” and other cells “off”.

Model III. The third model that we present in this study is a further extension of Model II. In Model

III there are now two positive feedback links rather than just one, i.e., in addition to all the reactions

in Model II, there is one additional reaction in which the RL complex can also convert Kp to Kpp.

This reaction therefore provides additional feedback between the ligand gradient and the kinases

when the system is in the “on” state. This introduces one more rate constant, c7 whose value is

taken to be c6/10. Using this value of c7 does not greatly change the bistable regime (see Fig 4b)

and one can therefore pick rate constants that are bistable in the stochastic simulations.

2.4 Stochastic reaction diffusion modeling

Numerical simulation methods. The stochastic reaction-diffusion method used is the RDME.

Briefly, the RDME [58–61] is an extension to the CME that adds the spatial position of each

molecule into the system’s state. Reaction and diffusion propensities for each molecule are calcu-

lated accounting the molecule’s position. Like all kinetic Monte Carlo methods, many independent

trajectories of the system are simulated and combined to calculate the probabilities. Detailed

methods for all numerical techniques used in the study are given in Text S1.

Rate constant adjustment with constant concentration of ligand. The CME models assume a

well-stirred volume, which implies that the reactants make many collisions before taking part in

a reaction [62]. When one models a system based on the RDME, the diffusion coefficient plays

an important role in determining the rate of the reaction. As a result, we can no longer pick rate

constants from the deterministic bistable regime and expect the proper stability behavior.

To determine parameters for the RDME simulations, we scanned across the parameters c1:

0.5− 3.0×10−5, c2: 1.0− 7.0×10−5, c3: 1.0− 4.0×10−3, c4: 1.0− 8.0×10−3, c5: 1.0− 8.0×10−3 and

c6: 1.0− 6.0×10−5 to tune the system’s bistability, starting from the CME parameters. Simulations

were performed using the full three-dimensional model described above, except using constant
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concentration boundary conditions with a ligand concentration of 11.4 nM. For each of Model II and

III, we selected a parameter set that was bistable and was closest to having an equal probability of

being in the “off” and the “on” state, i.e., the system spent an approximately equal amount of time in

both states. Fig S3 shows representative trajectories and PDFs for the selected RDME parameter

sets. Comparing the rate constants used in the RDME models (Table S1) to CME models (Table

1), one can see that the rate constants for the RDME are much lower. This is because, unlike the

CME simulations which take place in the whole volume (2.5x2.5x2.5 µm3), the RDME simulations

take place only in the membrane associated subvolumes. The reactions in the RDME simulations

therefore take place in a more confined space and the rate constant must be lowered to keep a

similar reaction rate.

3 Results

3.1 Gradient sensing in the ensemble average

In our polarization model, the spatial signal is provided by the direction of the concentration gradi-

ent of L, as shown in Fig 2. This spatial signal is passed on to the RL complex when L binds to R.

From RL, the signal is eventually passed on to Kp and Kpp. We included a strong spatial positive

feedback in the system, modeled by lowering the diffusion coefficients of RL and of Kp and Kpp

molecules after recruitment to the membrane.

To verify that gradient simulations exhibited the desired stability characteristics, we performed

RDME simulations of each model in the presence of a stochastic gradient (see Models and Meth-

ods). Model I showed the expected monostable graded response and Models II and III showed

bistable behavior, switching between the “on” and “off” states Fig 5. We also performed simula-

tions in the absence of ligand to ensure that Models II and III were still bistable, as shown in Fig 5b,

and therefore exhibited spontaneous polarization. These results confirm that the parameter sets

selected for the RDME model using a constant concentration of ligand are still valid for the gradient

simulations.

Next, we wanted to analyze the spatial response of Kp and Kpp to a gradient in the three mod-

els. To do so we needed to quantify how closely the spatial distributions of Kp and Kpp followed

the direction of the ligand gradient. To collect data for analysis, we performed RDME simulations of
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Fig 5: RDME probability distributions for Models I and II. (a) Probability distribution of fraction of Kp
in Model I from 100 independent RDME simulations with (blue) zero ligand concentration or (yellow) a
ligand gradient. (b) Probability distribution of fraction of phosphorylated kinases (Kp+Kpp) obtained from 50
independent RDME simulations of Model II with (blue) zero ligand or (yellow) a ligand gradient.

each of the three models. For Model I we performed 500 independent simulations and for Models

II and III we performed 16,000 independent simulations, all in a stochastic gradient. Each simu-

lation ran for 500 s of simulated time saving the state of the full lattice every 1 s. In addition we

performed the same number of control simulations for each model in a constant concentration of

11.4 nM ligand, which is the minimum ligand concentration in the gradient model. Reaction rates

for each of the RDME models vary and are given in Table S1.

Models II and III required significantly more simulations than Model I for the ensemble aver-

age to begin to converge. Model I is the monostable model of polarization, it does not have the

second feedback link involving Kpp. Even with a low diffusion coefficient of 5.0×10−3 µm2 s−1,

Kp molecules in Model I do not form clusters in individual cells in the simulations. On the other

hand, the presence of the second feedback link involving Kpp in Models II and III does lead to

clustering of Kp and Kpp in the simulations. The properties of these clusters in individual cells

are discussed below, but the clusters were relatively long-lived and moved slowly. Thus, many

independent simulations were required to average out the individual clusters into an ensemble

response.

To study the response for the ensemble, we first calculated the stationary probability distribution

of each subvolume for each species from the individual RDME trajectories. For Models II and III we
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only included time points when the system is in the “on” state. We then performed a weighted sum

over the distribution to obtain the mean density for each species for each subvolume. We also

calculated the stationary probability distribution and mean density from the control simulations

at a constant concentration of ligand. The ratio of the densities from the gradient and control

simulations is called the Enhancement Factor (EF) and corresponds to the relative increase in

density in a particular subvolume due to the gradient.

Fig 6 shows the Enhancement Factor for the phosphorylated kinases (Kp for Model I and Kpp

for Models II and III). It is clear from the figure that in the ensemble average the polarization

of all the three models follows the gradient. In the spherical projections, the phosphorylated ki-

nases have higher concentration near (0,0,0) and lower concentrations near (2.5,2.5,2.5). In the

equirectangular projections, the concentrations of Kp and Kpp are lowest near θ = π
4 and highest

near θ = −3π
4 . Compare Fig 6d-f to the ligand-only gradient in Fig 2b. The ensemble average for

Model I is much smoother than for Models II and III, which still show significant variability indicating

that even after 16,000 simulations their distributions have not fully converged.

To more quantitatively define the polarization response in the three models, we calculated the

EF as a function of Ω. As shown schematically in Fig 2 and discussed in Models and Methods,

the angle Ω is an order parameter for the membrane subvolumes with respect to the direction of

the gradient, ranging from 0 where the gradient is the highest to π where it is the lowest. Fig 7

shows the average EF value vs Ω for each of the three models as well as the ligand by itself. All

three models are able to polarize along the direction of the gradient. In fact, on average all three

models show identical degree of polarization, with a decrease of ∼15% in the concentration of

phosphorylated kinases from the front to the back of the cell. However, in the ensemble average

none of the models are able to recover the full range of the gradient, which is a drop of ∼30%.

3.2 Formation and behavior of polarization clusters in single cells

In the bistable Models II and III, Kp and Kpp form localized polarization clusters, primarily a single

dominant cluster, when the system switches to the “on” state, an example cell is shown in Video S1.

Fig 8 shows two examples of the density of a cluster of Kpp molecules during an “on” event from

two Model II simulation trajectories. Each cluster is localized to a small region of the membrane,
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Fig 6: Ensemble average response of the three models of polarization to a ligand gradient. From
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with the phosphorylated kinases not spreading significantly before the system switches to the “off”

state and the cluster disperses. All individual cells polarize strongly, but in a broad distribution

of directions. Polarization strength is not correlated with position. Individual cells can be quite

inaccurate in their polarization direction, but in the population average they align with the gradient.
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Fig 8: Density of Kpp molecules during a polarization event. (a) Kpp density during an “on” event
lasting 123 s. (b) Kpp density during an “on” event lasting 47 s. Both plots are from Model II simulations.

To quantify the polarization clusters, we performed a cluster analysis of the Kpp molecules

(see Models and Methods) at each time step in the “on” state for all 16,000 gradient simula-

tions for Models II and III. Some trajectories have multiple switching events in which case we

picked only the longest “on” event. We calculated the center of mass of each cluster and com-

puted its mean square displacement (MSD) along the surface of the membrane over time, as

shown in Fig 9. We fit the average MSD from the initial linear portion of the curve to a diffusion

model using 〈r2〉 = 4Dt, where 〈r2〉 is the MSD, D is the diffusion coefficient, and assuming two-

dimensional diffusion on the surface of the membrane. For Model II D=0.0018µm2 s−1 and for

Model III D=0.0024µm2 s−1. In both cases the diffusion of the clusters is significantly slower than

of the individual Kpp molecules making up the cluster.

We next wondered if there was any bias in the diffusion of the clusters toward higher gradient
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Fig 9: Motion of polarization clusters over time. The MSD of the center of mass of a cluster vs time for
(a) Model II and (b) Model III. The grey curves are representative traces from 100 trajectories and the blue
curves show the average of all 16,000 replicates.

regions of the cell. Fig 10a shows trajectories of some clusters and although the diffusion is slow

the clusters do show drift over time. To check for bias in the drift, we compared the starting and

ending Ω value for each cluster. Fig 10b+c shows that the starting Ωs are distributed according to

the expected EF, but the ending Ωs are somewhat depleted in the range π
2 to π. To further check

for bias, we calculated the change in Ω of each cluster, ∆Ω = Ωfinal − Ωinitial, which gave us a

distribution of ∆Ω values. We subtracted from this distribution the ∆Ω distribution from the control

simulations to look for any differences due to the gradient. Fig 10d shows the difference between

the distributions. Positive values indicate that more clusters in the gradient simulations drifted in

a given direction than expected and negative values indicate fewer. There is a definite bias in the

gradient simulations for more clusters to move up the gradient and fewer clusters to move down

the gradient.

To further study this phenomena, we divided the clusters into those that started in the high

gradient region Ω=0 to π
2 and the low gradient region Ω=π2 to π. The bias was slightly more

pronounced for those clusters starting in the high gradient region (see Fig S10). In addition, the

data show that clusters in Model III, which have an additional positive feedback term connecting

phosphorylation to the gradient, have a greater bias in their diffusion in the high gradient region.
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However, the size of the data set is not large enough to be quantitative regarding the enhanced

polarization refinement in Model III.

3.3 Accuracy of polarization and spatial positive feedback strength

The results in the previous sections focused on the sensing of a gradient signal in the three circuit

architectures. In each architecture, we included a spatial positive feedback mechanism via the low

diffusion coefficients of RL, Kp, and Kpp. Spatial positive feedback in cellular responses has been

attributed to many factors, including the cytoskeleton [5,53] and membrane changes [8,16] among

others. To study the effect of the strength of spatial positive feedback on polarization accuracy,

we ran additional simulations with higher diffusion coefficients for RL, Kp, and Kpp. We performed

16,000 independent RDME simulations of Model II, for both the gradient and control cases, at two

additional diffusion coefficients: 1.0×10−2 µm2 s−1 and 5.0×10−2 µm2 s−1. The diffusion coeffi-

cient plays an important role in the stability properties of the system, see Text S1. We therefore
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reparameterized the rate constants as necessary to maintain bistability in an approximately equal

proportion between the “on” and the “off” states. See Table S1 for the values of the rate constants.

Fig 11 shows the EF vs Ω for all three different diffusion coefficients. The ability of the cell

to accurately polarize decreases as the diffusion coefficient increases, which is a proxy for lower

spatial positive feedback. With an increase in D of 2X over the original model there is still a small

difference in phosphorylated kinases between the front and back of the cell on average, but with

an increase of 10X the average polarization signal is gone. It is important to note that the individual

cells in these models still form well-defined clusters, although not as sharp as in the original model.

So the cells are still polarizing, but the accuracy of the polarization decreases with a decrease in

the spatial positive feedback. The clusters diffuse too rapidly to maintain the information about the

direction of the gradient.

Ω
π/2 π

En
ha

nc
em

en
t F

ac
to

r

0.85

0.95

1.05

1.15

1.25

D=0.05
D=0.01
D=0.005
Ligand

0

Fig 11: Polarization accuracy by diffusion coefficient. The Enhancement Factor vs Ω for Model II with
three different values of D for RL, Kp, and Kpp: D=5.0×10−3 µm2 s−1 (yellow), D=1.0×10−2 µm2 s−1 (red)
and D=5.0×10−2 µm2 s−1 (blue). The ligand is shown in purple for reference.

3.4 Gradient amplification in single cells

We wanted to study to what extent individual cells were able to amplify the external gradient.

As stated in the introduction, this is a necessary step in cellular polarization. For Model I, we

calculated the amplification by starting from the point of greatest Kp concentration in the ensemble

average and calculated the concentration of Kp as a function of distance along the membrane from

this point. We did the same for L for comparison purposes. As can be seen in Fig 12a, Model I is
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not able to significantly amplify the gradient, in fact the gradient of Kp is slightly shallower than L.

For Models II and III, which exhibit distinct clusters, we started from the point of maximum Kpp

density for 200 individual clusters and calculated the concentration of Kpp as a function of distance

from this point over the entire duration of the “on” event. This calculation gave the internal gradient

of Kpp in the polarized state. Fig 12a shows the concentration as a function of distance from the

center of the polarization site relative to the mean concentration. The clustering in Models II and III

leads to an internal gradient that is significantly stronger than the external ligand gradient. While

the ligand gradient maximum is ∼1.3X the mean value, Models II and III produce Kpp gradients

with maximum amplifications averaging ∼18X the mean value with a width at half-maximum of

0.25µm. It is important to point out that even though the Kpp gradient is significantly steeper than

the ligand gradient, it is not aligned precisely with the ligand gradient direction in individual cells,

but rather in a distribution of directions centered on the external gradient.
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Fig 12: Internal amplification of the external gradient during polarization. (a) Relative concentration
vs distance from the site of polarization from the three models: Model I (blue), Model II (red), Model III
(yellow) and the ligand gradient (purple) for reference. (b) As in (a) for Model II with D=5.0×10−3 µm2 s−1

(blue), D=1.0×10−2 µm2 s−1 (red) and D=5.0×10−2 µm2 s−1 (yellow). All concentrations are normalized to
the average concentration in the control simulations.

We also looked at the gradient amplification of the clusters in the reduced spatial positive

feedback simulations. Fig 12b shows that as D increases the maximum amplification goes down

and the gradient spreads out over a larger region of the cell, becoming less point-like. Even

though the simulations with increased D showed little accuracy in detecting the gradient direction,
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they were still able to produce gradients of activated signaling molecules in individual cells that

were stronger than the ligand gradient initiating the signal. The directional information carried by

the signaling molecule gradient, though, was incorrect without strong spatial positive feedback.

3.5 Dependence on system size

Finally, to see if polarization occurred only when total kinase copy numbers were small and

stochastic noise was large, or if it was a more general phenomenon, we carried out a set of

simulations for Model II in a larger volume of 5×5×5µm3. We constructed a 4µm diameter cell

in the volume and placed 500 total kinase and 2000 receptor molecules, which is in the range of

molecule counts reported for the S. cerevisiae mating pathway [63]. We simulated 48 indepen-

dent trajectories for 3000 s each (see Text S1 for simulation details). The stationary PDF for the

system is shown in Figure S12, and confirms that the system is bistable; individual trajectories

switched between “off” and “on” states over the course of the simulations. Though we did not

collect enough simulation data to calculate the accuracy of directional response, the polarization

statistics followed those of the smaller simulation volume. The cells formed polarized clusters of

Kpp molecules in the “on” state with the clusters diffusing slowly on the membrane, as can be

seen in Video S2. The cells showed robust polarization with an internal Kpp gradient ∼80X above

the mean value (Figure S13). As expected, the “on” state was more stable for the larger system

size, with an average duration of 179 s compared to 23 s for the smaller volume (Figure S14).

4 Discussion

In this study we have shown that bistability and spatial positive feedback can act in tandem to es-

tablish a strong internal cellular polarization in response to an extracellular spatial gradient. Three

autophosphorylation models were analyzed, one monostable and two bistable. The monostable

Model I was able to produce an internal gradient that followed the external gradient in individual

cells, but was incapable of amplifying the external signal. Additionally, the direction of a cell’s inter-

nal gradient experienced relatively large fluctuations due to intrinsic noise in the external gradient

and the signaling pathway components.

In contrast, bistable Models II and III gave rise to strong internal amplification of the external
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gradient in individual cells, resulting in a strong polarization site that was buffered from fluctuations

in the external gradient. However, the tradeoff for strong polarization was inaccuracy in the polar-

ization direction. At the population level, Models II and III recovered the gradient direction to the

same degree as Model I, but individual cells in Models II and III polarized in a broad distribution of

directions centered on the gradient.

Furthermore, bistable models require strong spatial positive feedback to bias the polariza-

tion site toward the direction of the gradient. The polarization clusters themselves provide some

positive feedback, as the clusters diffuse more slowly than the molecules of which they are com-

posed [33]. However, this self-feedback was not sufficiently strong to prevent the loss of informa-

tion about the gradient direction. In our simulations, we needed to include an additional source

of spatial positive feedback, modeled by significantly reducing the diffusion rate of the activated

species, to achieve accurate gradient sensing. The individual cells still polarized without spatial

feedback, but the polarization site carried no directional information. Additionally, internal gradient

amplification decreased with decreasing spatial feedback and the polarization site became less

sharply defined.

In our simulations with strong spatial feedback, Kpp molecules localize to form clusters, which

define the polarization site. The clusters display mobility, albeit reduced in comparison to a free

moving Kpp molecule. This phenomenon of a mobile cluster has also been seen in Cdc24 local-

ization in S. cerevisiae [64] and in Cdc42 localization in Schizosaccharomyces pombe [65]. Similar

to the clusters in our simulations, Hegemann et al. [64] have shown that the mobility of Cdc24 in

yeast cells that sense a concentration gradient of α-factor is helpful when correcting for errors in

directional response as the entire cluster tries to move towards the signal direction.

The overall behavior of the system is robust to many parameter choices. While varying the

values of the kinetic rate constants does lead to large changes in the ratio of the switching times

between the “off” and “on” states, the polarization behavior of the system was consistent across

all of the values tested as long as the system exhibited bistability. The diffusion coefficients of the

activated species, though, have a large impact on the polarization process. In the limiting case

in which all species have the same diffusion coefficient, polarization disappears almost instanta-

neously and the system likely switches to an unpolarized “on” state via traveling wave propaga-

tion [66].
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Based on our work, it appears that an accurate response to a gradient signal in a bistable

system can be ensured only through strong spatial positive feedback. However, too strong spatial

positive feedback may limit the ability of a cell to correct initial inaccuracy or to respond to a chang-

ing gradient. In yeast strains engineered to include Bem1 in secretory vesicles, which increases

the spatial positive feedback, cells lose the ability to track a gradient and instead grow in the di-

rection of the initial guess no matter how inaccurate [5]. Additional positive and negative feedback

loops are likely necessary to fine-tune the cell’s ability to adjust its polarization direction.

The additional positive feedback link in Model III is an example of such a refinement. In Model

II the gradient influences primarily the first step of polarization, as it dictates where a cluster forms

and has less effects on the dynamics after formation. The extra positive feedback link to the

gradient in Model III enables the gradient to continue to influence the cluster after it has formed,

enhancing the ability of a cell to refine its initial polarization direction. In real gradient sensing

pathways there will likely be feedback links to the gradient at multiple levels of the pathway.

In light of evidence that some chemosensing pathways do behave as bistable systems [9, 10]

and that individual cells do display a distribution of polarization directions [5–8], we propose that

bistable circuits with spatial positive feedback may be an important component of chemosensing

circuits. In a conceptual model for polarization site selection, the cell constantly maintains a best

guess as to the location of the gradient source. This guess represents the integrated information

over some previous time window and continuously changes due to fluctuations in local concentra-

tions of biomolecules as well as fluctuations in the gradient due to the small number of signaling

molecules involved, in our simulations 9.5±3.1 near the plasma membrane. When the bistable

system switches to the “on” state, the cell locks in to its current best guess, which becomes the

initial polarization site. Later refinements through additional positive and negative feedback links

can serve to correct any initial errors in accuracy.

The proposed model has the advantage that it allows a cell to combine a strong all-or-none

response with a direction biased toward the gradient. There is an implicit tradeoff made in such a

model between the accuracy of individual cells and the strength of the spatial positive feedback,

which may affect later stages of the pathway. Different species may have evolved different accu-

racy characteristics depending upon their particular needs. High-throughput imaging experiments

characterizing the accuracy and fluctuations of individual cells polarizing in a gradient can provide
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data to support and parameterize or to disprove such a model.

Finally, it is important to note that the origin of of the spatial positive feedback in real cells

is unknown. Standard reaction-diffusion mechanisms appear to lose memory too quickly to be

the source. The question then becomes what provides longer-term spatial memory in cells? In

yeast it may be related to the cytoskeleton [5, 52, 67–69]. Cytoskeletal dynamics, particularly

exocytosis, have been shown to play a key role in allowing yeast cells to track a moving gradient

[5]. Cytoskeletal remodeling appears to have a memory on the order of minutes [70], which is

long compared to the autocorrelation time of a reaction-diffusion process. If the cytoskeleton is

the source of spatial positive feedback, new modeling techniques may be needed to accurately

describe polarization accuracy as fluctuations in the cytoskeleton cannot be accurately described

by reaction-diffusion dynamics [71].

The study presented here demonstrates the important connection between bistability and spa-

tial positive feedback in chemosensing pathways and highlights the tradeoff between accuracy and

amplification in individual cells. Further work to understand how such pathways balance these two

competing interests will hopefully shed additional light on the capacity for cells to transduce extra-

cellular spatial information into intracellular spatial information.
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1 Methods

1.1 Numerical simulation methods

1.1.1 Partial differential equations (PDE).

As described above, the ligand in our system diffuses from a point source and forms a concen-

tration gradient in the diffusion volume. To calculate the gradient, we numerically simulated the

diffusion equation in three dimensions:

∂

∂t
C(~r, t) = D · ∇2C(~r, t)

using a finite difference method in MATLAB (The MathWorks, Inc.). Here, C(~r, t) is the con-

centration of the diffusing species at the 3-dimensional position vector ~r at time t and D is the

diffusion coefficient. The volume of the modeled system was 7x7x7µm3 and the lattice spacing

was 0.5µm. The source produced the ligand at a constant rate of 865 molecules/s which diffused

with D=50µm2 s−1. The simulations were performed with a time step of 4.1×10−4 s to ensure

stability of the method. The point source was modeled using a constant flux condition at the ori-

gin. The edges of the simulation volume were modeled to maintain a linear gradient across the

boundaries. This linear gradient boundary condition approximates diffusion of a point source in an

infinite volume. See Text S1 for more details.

1.1.2 Chemical master equation (CME).

We use chemical master equation (CME) [1] to stochastically (probabilistically) study the behavior

of our system under well-stirred conditions. The CME is the stochastic equivalent to the mass-

action ordinary differential equations (ODEs). The CME is actually an infinite set of ODEs that

describe the time evolution of the probability for the system to have a given state [2, 3]. ~x is a

vector containing the number of molecules for each of the N species in the system. The time

derivative of the probability P~x to be in a particular state is:
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dP~x
dt

=
R∑
r

[−ar(~x)P~x(t) + ar(~x− Sr)P[~x−Sr](t)].

ar(~x) is the reaction propensity (probability per unit time) for reaction r of R given a state vector.

S is the N×R stoichiometric matrix, which contains the change in each molecule number caused

by a reaction.

The CME is analytically difficult to study for systems with bimolecular reactions, such as ours.

Instead, we use numerical Monte Carlo simulation, commonly known as the Gillespie algorithm

or the stochastic simulation algorithm (SSA) [4]. In the algorithm, the times for the next reaction

are picked randomly from an exponential distribution according to the propensities. Performing

many independent trajectories, one can reconstruct the time-dependent and stationary probability

density functions (PDFs) of the system. The switching times between the “on” and the “off” states

can also be calculated from the individual trajectories. We carried out 100 independent CME

trajectories of 10,000 s saving the state every 1 s. We used the Lattice Microbes [5] software

package for performing the simulations.

1.1.3 Reaction diffusion master equation (RDME).

The reaction-diffusion master equation (RDME) [6–8] is an extension to the CME that adds the

spatial position of each molecule into the system’s state. In the RDME method, the reaction volume

is subdivided into equal sized cubic subvolumes. Reactions are modeled using the standard CME

within each subvolume and diffusion of molecules is modeled using first-order jump processes

between neighboring subvolume. The probability for the subvolume ν to have state ~x is Pν~x and

its time evolution is computed using the master equation:

dPν~x
dt

=

V∑
ν

R∑
r

[−ar(ν~x)Pν~x(t) + ar(ν~x − Sr)P[ν~x−Sr](t)]

+

V∑
ν

N∑
n

±î,ĵ,k̂∑
ξ

{−dnνnPνn(t) + dn[(ν + ξ)n+1]Pνn−1,(ν+ξ)n+1
(t)}.
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The first summation is the CME applied to each subvolume. The second summation describes

the rate of change of the probability due to the molecules’ propensity to jump to a neighboring

subvolume. νn is the number of molecules of species n in subvolume ν and dn is the diffusive

propensity for a molecule of species n to jump from subvolume ν to neighboring subvolumes ν+ξ.

The diffusive propensity d is given by D/l2, where D is the macroscopic diffusion coefficient and l

is the subvolume length.

The RDME is a reasonable approximation for the Smoluchowski diffusion-limited reaction

model only when certain conditions relating the average diffusion and reaction time scales hold

[5, 7–10]. We have chosen the lattice spacing (50 nm) such that these conditions are met for our

reaction models.

Like the CME, the RDME is analytically intractable and again we use Monte Carlo simulations

to study our system. We used the next-subvolume algorithm introduced by Elf and Ehrenberg for

exactly sampling the RDME [9, 11]. Simulating the RDME requires significantly more computa-

tional resources than simulating the CME. To collect the simulation data for this study, we used

a custom version of the parallelized Lattice Microbes software [5] running on a high-performance

computing cluster.

1.2 Linear gradient method for numerical integration of reaction-diffusion PDEs

In our setup of the system, a point source some distance away from the reaction volume produces

ligand at a constant flux which diffuses around the source. This forms a concentration gradient

of the ligand originating from the point source. We need to obtain the concentration of the ligand

c(~r, t) at a position ~r relative to the point source at time t.

To start, we study the problem in one dimension using the standard Laplace transform tech-

nique [12,13]. The diffusion equation in one dimension for ligand concentration is given by

∂c(x, t)

∂t
= D

∂2c(x, t)

∂t2
(S1)

where, c(x, t) is the concentration at x at time t. As mentioned in the setup, we choose a constant
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flux initial condition which is given by

− ∂c(x, t)

∂x

∣∣∣∣
x=0

= cs (S2)

where cs is the constant concentration flux at the source. The boundary condition is given by

c(x→∞, t) = 0 (S3)

which means that the concentration becomes zero infinitely far away from the source. In order to

solve for c(x, t), Eq (S1) is first Laplace transformed in time, which leads to a 2nd order differential

equation in x given by

pc̃(x, p) = D
∂2c̃(x, p)

∂x2
(S4)

where, c̃(x, p) ≡ L{c(x, t)} is the Laplace Transform of c(x, t). The boundary condition remains

the same, while the initial flux condition, Eq (S2) is transformed to

− ∂c̃(x, p)

∂x

∣∣∣∣
x=0

=
cs
p

(S5)

Solving the 2nd order differential equation Eq (S4), we get

c̃(x, p) = Ae
√
p/Dx +Be−

√
p/Dx (S6)

where A and B are constants to be determined. To solve for the constants, we substitute Eq (S6)

in Eq (S5) and Eq (S3). This gives

(√
p

D
[Ae
√
p/Dx +Be−

√
p/Dx]

)∣∣∣∣
x=0

= −cs
p
⇒
√
p

D
(A−B) =

−cs
p

(S7)

c̃(x→∞, p) = 0⇒ A = 0 (S8)

which in turn gives
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A = 0

B =
cs
p

√
D

p
(S9)

Substituting for A and B in Eq (S6) gives the exact Laplace transformed solution for c̃(x, p), which

is

c̃(x, p) =
cs
p

√
D

p
e−
√
p/Dx (S10)

Now to get the solution in real time, we just carry out an inverse Laplace transform of Eq (S10) in

Mathematica. This gives

c(x, t) = cs
√
D

(
2
√
t√
π

e−
x2

4Dt − x√
D

+ x
Erf(x/(2

√
Dt))√

D

)
(S11)

where Erf is the error function which is defined as Erf(z) = 2√
π

∫ z
0 e−t

2
dt.

We would now like to numerically obtain the solution of the 1-D diffusion equation and compare

it to the exact result, Eq (S11) as a further check. The numerical integration of the diffusion

equation now has to be done on a finite lattice of size “n” and this changes the boundary conditions

as we cannot have zero concentration at the boundaries of a finite lattice. We instead force the

boundary and its immediate neighbor to have a linear gradient. This is invoked by creating a virtual

lattice site “n+1” beyond the boundary and setting the ratio of the fluxes between the neighbors to

be equal, i.e.,

f(n+ 1)/f(n) = f(n)/f(n− 1)⇒ f(n+ 1) = f(n)2/f(n− 1) (S12)

The flux of the virtual lattice site can further be approximated as

c(n+ 1) = c(n)2/c(n− 1) (S13)

where c(n) is the concentration of the ligand at the nth site. The concentration of the virtual site,

c(n+1), is then used to determine the concentration at the boundary, c(n), using the finite difference

method. In Fig S5, we show a plot of the concentration vs. distance (x) from the source. The blue
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curve is the concentration obtained numerically using PDE and the red curve is from the exact

analytical result from Eq (S11). The PDE solution is obtained by splitting the total length of 2 m

into 100 lattice sites, with the length of each site being 0.02 m and the integration time step being

0.01 for stability. The solutions obtained from the two methods show good agreement with each

other.

Although we can easily obtain the exact solution of the one dimensional diffusion equation

analytically, doing the same for three dimensions is not possible. However, having shown that our

numerical technique for solving the diffusion equation works in one dimension, we use the same

finite difference method with linear gradient boundaries to numerically obtain the solution for the

3-D diffusion equation as well.

1.3 Constant gradient boundary conditions.

We have developed a novel constant gradient boundary condition for the RDME that we use here

to set up and maintain a ligand gradient in the reaction volume that will provide a directional signal

for polarization. To implement the boundary conditions, we create a one subvolume thick layer of

virtual subvolumes around the reaction volume. Each of these virtual subvolumes has a parameter

that records the mean value of the ligand concentration expected at that position in the reaction

volume. For each of the real boundary subvolumes, an influx propensity is calculated from all of its

neighboring virtual subvolumes using these mean ligand concentrations. This propensity is added

to the total propensity for ligand to diffuse into the subvolume during the simulation. An existing

ligand molecule can diffuse out of a boundary subvolume and into a virtual subvolume as usual,

but it is then destroyed. Figure S2 shows a comparison of the deterministic ligand gradient with

the stochastic gradient across the diagonal of the reaction volume.

Each boundary subvolume is essentially connected to one or more virtual subvolumes outside

the simulation volume with a constant ligand concentration. Since these virtual subvolumes do not

have fluctuations, the boundary subvolumes are lacking moments in their distribution functions.

These errors will gradually disappear as the distance from the boundary increases. We analytically

and numerically tested for the necessary distance until the ligand distribution in the subvolumes

returns to Poissonian (see Figs. S5, S6 and S7). We use a boundary region of 5 subvolumes,

7



which in our testing is sufficient. See Text S1 for additional details.

1.4 Estimate of error in the variance using the RDME constant gradient boundaries

In our setup, the concentrations of the ligand at the boundaries of the reaction volume are ob-

tained from the numerical solution of the three dimensional PDE and fed in to the RDME. These

concentrations are mean values that are constant at the boundaries and have no higher moments.

Therefore, when RDME simulations are performed, there might be deviations in the variance of the

concentrations at the lattice sites near to the boundaries. While carrying out RDME simulations

with constant gradient boundaries, it is important to ensure that the variance of the diffusing ligand

converges quickly and is maintained throughout.

To this end, we looked at the spatial mean concentration and its variance in three kinds of lat-

tices. First, we consider a periodic one-dimensional lattice with N sites, as shown in Fig S6. Each

site has two neighbors facilitating exchange of molecules with the neighboring site and because

of periodicity, the site N has site N-1 and site 1 as its neighbors. One expects that at steady state

the mean concentrations in each of the sites would be equal and be given by c/N, where c is the

total concentration of the species. The variance would also be expected to be a function of N. To

determine how the variance converges with N, we find the relation between the variance and the

number of lattice sites in the lattice. In the following, we calculate the mean and variance for N=3.

As shown in Fig S6, the initial concentrations of the three lattice sites are respectively c1, c2 and

c3. The molecules in each lattice site can diffuse to the neighboring one with a diffusion constant

of k. Now, if we treat the three lattice sites as three different species, we can write down the rate

equations of the concentrations as follows:

dc1
dt

= k(c2 + c3)− 2kc1

dc2
dt

= k(c1 + c3)− 2kc2

dc3
dt

= k(c1 + c2)− 2kc3 (S14)

The probability that lattice sites 1,2 and 3 have concentrations c1, c2 and c3 at any given point
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in time is given by the following chemical master equation [3]:

dPc1,c2,c3
dt

=k[(c2 + 1)Pc1−1,c2+1,c3 − c2Pc1,c2,c3 + (c3 + 1)Pc1−1,c2,c3+1 − c3Pc1,c2,c3

+ (c1 + 1)Pc1+1,c2−1,c3 − c1Pc1,c2,c3 + (c1 + 1)Pc1+1,c2,c3−1 − c1Pc1,c2,c3

+ (c2 + 1)Pc1,c2+1,c3−1 − c2Pc1,c2,c3 + (c3 + 1)Pc1,c2−1,c3+1 − c3Pc1,c2,c3 ]

(S15)

The rate of change with respect to time of mean concentration, m1 =< c1 > and mean square of

concentration v1 =< c1
2 > in site 1 are given by

ṁ1 =
∑
c1

∑
c2

∑
c3

c1Ṗc1,c2,c3

v̇1 =
∑
c1

∑
c2

∑
c3

c1
2Ṗc1,c2,c3 (S16)

Similarly, one can also define m2, m3, v2, v3, v12 =< c1
2c2 >, v23 =< c2

2c3 > and v13 =<

c1
2c3 >, where the angular brackets denote an average over the probability distribution. Using the

definitions of these ensemble averages from Eq (S16) and expanding the probabilities in these

definitions using Eq (S15), we get the following rate equations of means and variances.
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ṁ1 = 2m2 + 2m3 − 4m1

ṁ2 = 2m1 + 2m3 − 4m2

ṁ3 = 2m1 + 2m2 − 4m3

v̇1 = 4v12 + 4v13 − 8v1 + 2m1 + 2c

v̇2 = 4v12 + 4v23 − 8v2 + 4m2 + 2m1 + 2m3

v̇3 = 4v13 + 4v23 − 8v3 + 4m3 + 2m1 + 2m2

v̇12 = −8v12 + 2v2 + 2v1 + 2v23 + 2v13 − 12m1 − 12m2

v̇13 = 2v23 + 2v12 + 2v3 + 2v1 − 8v13 − 2m1 − 2m3

v̇23 = 2v13 + 2v12 + 2v2 + 2v3 − 8v23 − 2m2 − 2m3 (S17)

where c is the total concentration. After setting the L.H.S to zero at steady state, we get the

solution for m1, m2, m3, v1, v2 and v3 as follows.

m1 = m2 = m3 = c/3

v1 = v2 = v3 = (c2 + 2c)/9

var1 = var2 = var3 = 2c/9 (S18)

where vari = vi −mi
2 is the variance for the ith lattice.

Carrying out similar analysis for N=4, gives mi = c/4 and vari = 3c/16. This suggests that the

mean (m), variance (var) and Fano factor (F=variance/mean) as a function of N are given by

mi(N) = c/N

vari(N) = c(N − 1)/N2

Fi(N) = (N − 1)/N (S19)
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From Eq (S19), it is clear that in the limit of large N, one will recover the Poisson distribution

as the Fano factor will equal 1. Fig S7 shows the variance and the deviation from Poissonian

(1-F) for simulations carried over a 1D periodic lattice and its comparison with theory from Eq

(S19). The figures show that the variance quickly converges as N increases and the deviation also

reduces rapidly. In fact, at 5 lattice sites away from the first one, the deviation from Poissonian

is 0.1. We therefore model the membrane in our reaction volume 5 subvolumes away from the

boundaries of the cell and this ensures a converged variance for the concentrations of the ligand

at the membrane.

We also looked at the means and variances obtained from simulations of a concentration

gradient on a 1-D and 2-D lattice as shown in Figs S8 and S9. Both of these figures show that the

mean is approximately equal to the variance thereby following a Poissonian distribution of ligand

concentrations even for the smallest 2-D lattice size. The gradient boundary conditions for the

RDME maintain the correct Poissonian distribution of concentrations across the lattice.

Normalization of the RDME simulations. In our model system, all the reactions take place in

the membrane associated subvolumes of the cell. The membrane, which is of curved geometry,

cannot be discretized onto a cubic lattice such that each subvolume has an equal number of mem-

brane associated subvolume neighbors. Diffusion within the membrane associated subvolumes is

correct in that each subvolume has the same probability of being occupied by a particular parti-

cle. However, the degree of connectivity is different for different areas of the simulation volume.

Because the bistable switching is extremely sensitive to local positive feedback, a bias is intro-

duced based on each subvolume’s connectivity. In order to correct for this, we performed control

simulations for each model using a constant ligand concentration of 11.4 nM. We use the ratio

of the densities of Kp and Kpp in the gradient simulations to the control simulations to compare

polarization in different regions of the cell. We call this ratio the “Enhancement Factor” as it is an

enhancement of spatial polarization with respect to constant ligand concentration.

1.5 Kinase clustering calculations

During the simulations, clusters of Kp and Kpp form stochastically when the system switches to

the “on” state. To identify and quantify these clusters, we first convert the 3-dimensional Cartesian
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coordinates to spherical polar coordinates. Since we analyze the spatial distribution of ligand, Kp

and Kpp in θ-z space, we also identify the clusters in θ-z space. To categorize the molecules into

various clusters, we use hierarchical clustering with a cutoff distance of 25. We then calculate the

center of mass of the clusters for each time step that the system is in the “on” state.

The drift of the center of mass of the clusters was calculated as a function of time. From this

quantity we arrived at the mean square displacement (MSD) of the clusters on the membrane. In

order to calculate the MSD, the distance that the cluster travels in a single time step was deter-

mined by first calculating the angle between the two points at the center and then calculating the

distance moved (arc length) by the formula arc length = radius x angle. Doing this for all possible

lengths of time and taking its square gives us the MSD of the clusters as a function of time.

2 Additional Results

2.1 Effect of kinase diffusion on bistability

A defining characteristic of reaction-diffusion master equation (RDME) models is that each species

has a specific rate of diffusion within each subvolume type and between subvolumes of different

types. This is in contrast to CME models where diffusion is assumed to be infinitely fast. It can

be expected then that the finite diffusion coefficients in RDME models will change the stability

properties of the system compared to the CME model. To study this effect, we performed 15

independent RDME simulations of Model II for each of a variety of diffusion coefficients for the

phosphorylated kinase species (Kp and Kpp). Fig S11 shows how the bistability changes as D is

increased. For the lowest diffusion coefficient, D=5×10−3 µm2 s−1, the system stays in the “on”

state for a long time, only rarely switching “off”. As D increases the system spends more and more

time in the “off” state.

When phosphorylated kinases diffuse more slowly, they have increased opportunities to cat-

alyze the phosphorylation of nearby kinases. This effect agrees with our physical understanding

of the system, but creates difficulties for studying a bistable system using the RDME. We wanted

to include a strong spatial positive feedback in the system, modeled by lowering the diffusion co-

efficient of Kp and Kpp molecules after recruitment to the membrane. To do so, while maintaining

Model I as monostable and Models II and III as bistable, we had to re-parameterize the rate con-
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stants compared to the CME. All the results in the main text are for the re-parameterized rate

constants for low diffusion of 5×10−3 µm2 s−1.

2.2 Results for large volume simulations

In order to verify that bistability, cluster formation and persistent polarization was not a phe-

nomenon restricted to just the small system size, we carried out RDME simulations of Model II

in a larger volume of 5x5x5µm3 as well. We carried out 48 independent RDME simulation runs of

Model II with a ligand gradient. Each simulation ran for 3000 s of simulated time saving the state

of the full lattice every 0.1 s. The simulations were performed in a gradient of ligand concentra-

tions varying between 28.5 nM at (0,0,0) to 8.3 nM at (5.0,5.0,5.0) µm. The cell diameter was

4 µm. Initial species counts were: K=500 molecules, Kp=0 molecules, Kpp=0 molecules, P=130

molecules, R=2000 molecules, RL = 0 molecules. Reaction rates for this system are given in Table

S2. Fig S12 gives the steady state probability distribution of the fraction of phosphorylated kinases

in the system. Fig S13 gives the internal amplification of the external gradient during polarization.

Finally, Fig S14 shows the difference in switching time distributions for the smaller volume simula-

tions compared to the larger volume simulations. The larger volume simulations exist in the “on”

state 10X longer than the smaller volume simulations.
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Supplementary Tables

Table S1: Rate Constants for the RDME Simulations
Rates Model I Models II and III

Units: µm2s−1 D=0.005 D=0.005 D=0.01 D= 0.05
1st order∗

c5 4.0 x 10−3 4.0 x 10−3 6.0 x 10−3 7.0 x 10−3

2nd order †
c0 1.0 x 10−3 4.0 x 10−3 4.0 x 10−3 4.0 x 10−3

c1 2.0 x 10−5 5.0 x 10−6 6.0 x 10−6 1.0 x 10−5

c2 4.0 x 10−3 1.0 x 10−5 1.2 x 10−5 2.0 x 10−5

c3 – 1.0 x 10−3 1.5 x 10−3 2.0 x 10−3

c4 8.0 x 10−3 7.0 x 10−3 7.1 x 10−3 7.5 x 10−3

c6 1.0 x 10−4 4.0 x 10−5 4.3 x 10−5 4.5 x 10−5

c7 – 4.0 x 10−6 4.3 x 10−6 4.5 x 10−6

∗ units=s−1; † units=molecules−1s−1
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Table S2: Rate Constants Used in Large Volume Simulation of Model II
Rates Model II

Units: µm2s−1 D=0.005
1st order∗

c5 2.0 x 10−3

2nd order †
c0 5.0 x 10−4

c1 1.0 x 10−6

c2 2.0 x 10−6

c3 6.0 x 10−5

c4 2.0 x 10−4

c6 2.0 x 10−6

∗ units=s−1; † units=molecules−1s−1
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Supplementary Figures
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Figure S1: Mean phosphorylated kinases with increasing ligand concentration. Representative tra-
jectories of copy numbers of phosphorylated kinases (Kp) vs. time from a CME simulation of the set of
reactions in the monostable model. Initial species counts at the start of the simulation are: K=64 molecules,
Kp=0 molecules, P=16 molecules, R=400 molecules, RL=0 molecules. Reaction rates are given in Table 1
of main text. Ligand copy numbers are 0 (blue), 100 (yellow), 200 (green).
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Figure S2: Stochastic simulations of Model II showing bistability. (left) Probability distribution of frac-
tion of phosphorylated kinases (Kp+Kpp) obtained from 100 independent CME simulation runs of the set
of reactions in Model II. (right) Representative trajectories showing the copy numbers of phosphorylated
kinases vs. time from a CME simulation of the set of reactions in Model II. Initial species counts at the
beginning of a simulation run are: K=64, Kp=0, Kpp=0, P=16, R=100, RL=0 in a volume of 2.5x2.5x2.5
µm3. Ligand copy numbers are 0 (top row), 75 (middle row), 150 (bottom row).
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Figure S3: Stochastic reaction-diffusion simulations of Model II and III with bistable parameters.
Probability distributions (top) and representative trajectories (bottom) obtained from 200 independent RDME
simulations of Model II (a and b) and Model III (c and d). Initial species counts are: K=64 molecules,
Kp=0 molecules, P=16 molecules, R=100 molecules, RL=0 molecules and ligand concentration=11.4 nM.
Parameters are given in Table S1.
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istic concentrations with that obtained from simulations in a 3D lattice of dimensions 2.5x2.5x2.5 µm3 when
boundaries have the same ligand concentrations in both. Ligand concentrations form a gradient across the
diagonal of the 3D lattice.
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Figure S6: Representation of a 1-D periodic lattice of N sites. Here c1, c2 up to cN are concentrations
of the species in their respective lattice sites.
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Figure S7: Diffusion in a one dimensional periodic lattice. (left) Variance and (right) deviation from
Poissonian (1-F) for two different concentrations (upper) C=1 and (lower) C=4 molecules per lattice site of
the diffusing species. These are also compared with the theory (red curve) obtained from Eq. (S19).
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Figure S9: Mean and variance as obtained from RDME simulations with constant gradient bound-
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Figure S11: Stability properties of RDME simulations with varying D. Probability density for the frac-
tion of phosphorylated kinases (Kpp) for the indicated values of D (in µm2 s−1) for the species Kp and
Kpp. Reaction rates were c0=4.0×10−3, c1=5.0×10−6 , c2=1.0×10−5, c3=1.0×10−3, c4=7×10−3, c5=5×10−3,
c6=4.0×10−5 (see Table S2 for units). Other diffusion coefficients were K, P, R, and RL=5.0µm2 s−1 and
L=50.0µm2 s−1. Initial species counts were: K=64, Kp,Kpp=0, P=16, R=100, RL=0.
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Figure S12: RDME probability distributions for Model II in a large volume of 5x5x5µm3 Probability
distribution of fraction of phosphorylated kinases (Kp+Kpp) obtained from 48 independent RDME simula-
tions of Model II with a ligand gradient. Each simulation ran for 3000 s of simulated time saving the state
of the full lattice every 0.1 s. The simulations were performed in a gradient of ligand concentrations varying
between 28.5 nM at (0,0,0) to 8.3 nM at (5.0,5.0,5.0) µm. Initial species counts were: K=500 molecules,
Kp=0 molecules, Kpp=0 molecules, P=130 molecules, R=2000 molecules, RL = 0 molecules. Reaction
rates for this system are given in Table S2.
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Figure S13: Internal amplification of the external gradient during polarization in large volume of
5x5x5µm3 Relative concentration of Kpp vs distance from the site of polarization for Model II. The concen-
tration of Kpp in a polarized state is normalized to the average concentration at each membrane site in the
unpolarized state. Each RDME simulation ran for 3000 s of simulated time saving the state of the full lattice
every 0.1 s. The simulations were performed in a gradient of ligand concentrations varying between 28.5
nM at (0,0,0) to 8.3 nM at (5.0,5.0,5.0) µm. Initial species counts were: K=500 molecules, Kp=0 molecules,
Kpp=0 molecules, P=130 molecules, R=2000 molecules, RL = 0 molecules. Reaction rates for this system
are given in Table S2.
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Figure S14: First passage time distribution from “on” to “off” state for Model II First passage time
distribution (blue) and its exponential fit (red) for (a) smaller volume of 2.5x2.5x2.5µm3 for 200 simulation
runs of Model II of 500 s each and (b) larger volume of 5x5x5µm3 for 47 simulation runs of Model II of 3000
s each.
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Video S1: Spatial time trajectory of Kpp for Model II in a small volume of 2.5x2.5x2.5µm3. A movie
of the spatial location of Kpp on the membrane of a smaller volume recorded every 1 s from 255 s to 500
s for a 500 s simulation run. The video shows 3 switching events from “off” state to “on” state during this
time span. The simulation was performed in a gradient of ligand concentrations varying between 18.5 nM
at (0,0,0) to 11.4 nM at (2.5,2.5,2.5) µm. Initial species counts were: K=64 molecules, Kp=0 molecules,
Kpp=0 molecules, P=16 molecules, R=100 molecules, RL = 0 molecules. Reaction rates for this system
are given in Table S1.

31



Video S2: Spatial time trajectory of Kpp for Model II in a large volume of 5x5x5µm3. A movie of the
spatial location of Kpp on the membrane of a smaller volume recorded every 1 s from 1600 s to 1900 s
for a 3000 s simulation run. The video shows 1 switching event from “off” state to “on” state during this
time span. The simulation was performed in a gradient of ligand concentrations varying between 28.5 nM
at (0,0,0) to 8.3 nM at (5.0,5.0,5.0) µm. Initial species counts were: K=500 molecules, Kp=0 molecules,
Kpp=0 molecules, P=130 molecules, R=2000 molecules, RL = 0 molecules. Reaction rates for this system
are given in Table S2.
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