Firebird 2.5 Language Reference

Paul Vinkenoog
Dmitry Yemanov
Thomas Woinke

Firebird 2.5 Language Reference
by Paul Vinkenoog, Dmitry Y emanov, and Thomas Woinke

Table of Contents

O | gL oo (0 1o o RO UPPTTR SO 1
SUDJECT MBITEY ... ettt et e et e et e e e 1
AULNOTSNID et ettt e et e et e e e e e aeees 1

2. BACKGIOUNG ...ttt 2
S @ I = Yo = PSPPI 2
S @ o [T = £ T 2
ErrOr CONGITIONSceeeeeeeeiit ettt e et eeene s 3

3. LaNQUEOE SITUCLUIEeeveeeee ettt et et e e e e et e e e e e e e 4
Basics: statements, toKens, KEYWOIdSoiiuuiiiiiii e 4
T = 0 1L 1= £ PP PP PPPPTTRPPPPIN 4
(1 = P TSRS PTTR 4
OPErators @0 SPECIAIS ...c.vuieeeitie ettt ettt 4
10001001001 01 J PP PRSPPI 4

R D - v B 1Y 0= TP PPN 5
NUMENTC TYPES ..ttt ettt e e et e et et e e e et e e e e 5

SIM A L LN T ettt e e ettt ettt e et e e et e e e n e aee 5
INTEGER ...t 5
BIGINT a8 LY ... eeeeetii ettt ettt ettt e e et e et e e ent e eees 5
FLOAT dalA LY ... ettt ettt e e e enees 5
REAL daa LY ... eeeeeti ettt ettt e e e e 6
DOUBLE PRECISION data tYPe ...cevvvueeiiiiieeeiii ettt 6
LONG FLOAT daa tYPe . .ceeeineeiiit ettt ettt e e e e e e e eeees 6
NUMERIC daA TYPE ..evve ettt ettt e et e e e e eees 6
DECIMAL daEA LY ... ettt ettt ettt e et e eeena s 7
CNAIBCLEr TYPES ..ttt 7
CHARACTER QA LYPE ... eeeeiiie ettt ettt ettt e e 7
NATIONAL CHARACTER daa tyPeccovvuiiiiiiiieeiii et 8
CHARACTER VARYING dalatyPecevueieeiinieiiiiiieteei e 8
NATIONAL CHARACTER VARYING datatypec.uuveeiiriiieiiiiiieeeciiieeeciiee 8
DALE/TIME LYPES ... ettt ettt et eaaas 9
DATE TalA tYE .. eertieeeiti ettt ettt e e 9
TIME Qa8 EYPE . even ettt et e et e e et e e e e e eees 9
TIMESTAMP ala tYP. ... oeeeiiiieeeii e et 9
BINAIY TYES .ttt ettt e e e e r e aaes 10
BLOB a8 TYPE ..eevteieeii ettt 10
F N = 7 PP UPPTTPPN 11
COMPAITSON FUIES ...ttt ettt e et e et e e e ee e e e eebenaeeens 11
COBICION TUIES ...ttt ettt e et e et e e e e 12
COlBLION TUIES ...ttt et e e e e e s 12

5. CommON 1anguage El@MENEScceeeeeieii et 13
VAUE EXPIESSIONS ...ttt ettt ettt ettt et e e e e e e e e e ennan s 13
SEECE EXPIESSIONSceieiii ettt ettt e et e et e e e 13
PrEAICALES ... ettt 13

6. DML SEBEEMENTSeuiierieieie ettt et e e r e e e e r e e e 14
DEL ETE .ttt 14

ALTBSES e 14
TRANSACTION ..ottt 15
WHERE ...ttt et 15
P AN e e et e e e e eene 15
ORDER BY .ottt 15
ROV S e ettt 15
RETURNING ...ttt e e 16
EXECUTE BLOCK ...ttt ettt e e e e 17
INpUt aNd OULPUL PArBMELENSuuiieiiie ettt e e 18
Statement tEIMINGLOIScovuiieeiii ettt e et eeena e eees 18

Firebird 2.5 Language Reference

EXECUTE PROCEDUREu oottt ettt e e e e s e e e e e 19
LI S R 20
INSERT ... VALUES ...t e e 20
INSERT ... SELECT ittt e e e e e e e e e ean e eees 21
INSERT ... DEFAULT VALUES ...t 21

The RETURNING ClalSEouuiivtieiiieeie e e e et e e e s e e e e st e e s e eaneees 21
Inserting int0 BLOB COIUMNScivuiiiiiiiii e e e e 22
INSERT CURSOR ..ottt ettt et e e e s e e e e e s e et e et e e s et e eeanaeees 22
R 23
S O 24
The TRANSACTION Ir€CHVE . .oevneeieiiii e 24
FIRST, SKIP @and ROWS ...ttt e e e 25

I (SN e o) 10 00 T T P 27
Selecting INTO VariableS ... covviiii e 29

ThE FROM ClAUSE .. .vviiiieii ittt e et e e et e e eans 30

N o TP 33

ThEe WHERE ClaUSE .. .cuiiviiii ettt ettt et e et e e aaas 39

The GROUP BY ClaUSEcvuiiiiiieeieeete ettt e e e e eas 41

THE PLAN ClaSE ...iiiiiiiiieei ettt et e e e e e eas 45
L] 48
MATERIAL COPIED FROM THE LRUouiiiiiiiiicciece e 50

(] = 0 A = 67
USING 8N @lI8S ..euniiiiiiiii e e 68

THE SET ClaUSE ... ittt e e e e e ees 68

ThEe WHERE ClaUSE .. .cuiiviiiieiieie ettt ettt e e anas 69
ORDER BY an0 ROWS ...t e e s 69
RETURNING ..ooiiiii ettt e e e e e e e e eeaas 70
Updating BLOB COIUMNSuiiiieiiiiecii e ee e e e e e e et e eaeeeanes 70
UPDATE OR INSERT ..iittiiiiiiiieie et ettt e e e e e e e e et e e st e st e e et 70
The RETURNING ClalSE .. .ouuiiieieiiieeieee et e e e e e s e e e e et e s e eaneees 71

7. BUilt-in functions and VariableSccouiiiiiiiii s 72
CONEEXE VAINTADIES .. oeeiici e et e et 72
CURRENT _CONNECTT O ..ottt et e e e e e et e e e eata e e e 72
CURRENT _DATE .. iiiiiiiiiii e e e e e et e e e e e e e e e et e e e e erba e eeenes 72
CURRENT _ROLE ...ttt e et e e e 72
CURRENT _TIIVE ... ittt e e e e e e e e e e et e e e e aaa e eeenes 73
CURRENT _TI MESTANP ..ottt e e et e e e aba e eeens 73
CURRENT _TRANSACTI ON ...uuiiiiiii et e e e e e et e e e eaaa e e 74
CURRENT _USER ... ittt e e et e e et e eeenes 74

[I I 1N T 75

(€ D S 00 b T 75
IS I T NN 76

N Y 76

B TR 76

L@] 2T 77

ROW COUNT ..ttt et e e e et e e e et e e e e et e e e e et e e e eabaaeaees 77
10 G 0 B PO PT PSPPI 78
SO ST AT E ..ttt ettt et aaaaa 78

B O 2 79

LT OMORROW ettt e e e e e e e e r e ras 80
UPDATT NG L.ttt e e et e e e e e e e e e e et e e st e e e e e eaans 80

B Y I = (A 80

L o 81
o o 10 10 o (o PP 81
ABS() e 81

A COG) iittie i e 82
ASCIH _CHAR(weneiiiie et e e e eaaas 82
ASCIH VAL ittt 82

Firebird 2.5 Language Reference

ASIN(D vttt ettt 83
ATAN(ettt ettt ettt ettt ettt ettt 83
ATANZ() oottt ettt ettt ettt ettt ettt 84
BIN_AND() . eveetetee et eeeee oot ee ettt e et et es s e ettt e, 84
BIN_OR() «.veveteeeeeeeeeeeeeeeeeeetetes e eeeeeeesee e eeee et et es e e e ee s e ettt ee e, 85
BIN_SHL() «.veveeeteeeeeeeeeeeeeeeeee e s s eee et st eee e s e e e tee et e e e et es e et en e, 85
BIN_SHR() e eeeeeeeeeee e eeeeeee e e e eeee et et ee e ee e s e et et s e e eee e en e et en e 85
BIN_XOR() .- vveveveeeeeeeeeeeeeseseeseeses e eeee et et s e e e et es e eeseet et s s e etee oo eeeanes 86
BIT_LENGTH() e eveveeeeeeteeeeeeeeeesee e oot ee et es et es st es s e enen e, 86
CAST() oottt ettt ettt ettt 87
CEIL(), CEILING() vvvveveveeeeeeeeeeeeeeeeeeeeeee e eeeeeees e e e seeteses et 89
CHAR_LENGTH(), CHARACTER LENGTH() «.vveveveereeeeeeeeeereseeeeeereseeees %
CHAR _TO_UUID() ettt eeeeeeeee ettt es e 90
COALESCE() . vveveveeereeeeeeee e et ee ettt ettt 01
COS() ettt ettt ettt 91
COSH() vttt ettt ettt ettt ettt 92
COT() vttt ettt ettt ettt ettt e ettt e et s e et 92
DATEADD() .ttt oottt ettt ettt ettt 93
DATEDIFF() .ottt ettt e et ettt st s et n e, 93
DECODE() .. veteteeeeeeee ettt ettt ettt e ettt %
EXP) . eeeeeeeeeee e ee ettt ettt ettt ettt 95
EXTRACT() «vveveeeeeeeeeeeetes e e et s ettt e e e e et s e ee et et et en e e et et 95
FLOOR() vttt ettt ettt s et ee ettt n e %
GENL_ID() «vveveeeteeeeeee ettt e ettt e ettt 97
GEN_UUID() ettt ettt ettt ettt s e 97
HASH() vttt ettt s ettt et e ettt 98
TIFQ) vttt et e et e e e ettt ettt ettt 98
LEFT() «vreeeeeeeeee et e et eee ettt e et e e ettt et e st e ettt 98
LINQ) ettt ettt ettt ettt ettt et e ettt 99
LOG) vttt et e ettt e ettt e ettt e et e ettt 99
LOGILO() ettt eee et s et e e e ettt ee ettt r e 100
LOWER() vttt ettt ettt ettt 100
LPAD() ettt ettt ettt ettt ettt 101
MAXVALUE(©.vveve ettt ettt s ettt eee e, 102
MINVALUEQ .ottt ettt n e enenen. 102
IMOD() vttt ettt e ettt ettt e et 102
NULLIF(Q) vttt ettt ettt ee et een e en e 103
OCTET_LENGTH() cvvvvevteeeeeeeeee ettt eee et e e es e s e en s 103
OVERLAY () oottt oottt e et sttt 104
PL(ettt ettt ettt ettt 105
POSITION() vttt ettt ettt s e e et ee ettt s e e et es e e 105
POWER() .o eeeeeeeeteteseeeeee et es e eeeet et es e e eet e e e et et ee e et eeer e, 106
RANDI() vt e ettt ettt ettt ettt et e et s e, 106
RDBSGET _CONTEXT() «evvvevereeeeeeeeeeseseseeeeeeseseeseereseseseeeeeeeseseeenenenen. 107
RDBSSET_CONTEXT() «.voveeeeeeereeereseeeeeeeeseeeeeeeeteseseseeeeeses e seseee s s s e 108
REPLACE() ..ttt teeeeeeeee et eteeee e et s et ee et e e et es e s eeee s s 109
REVERSE() ..ttt eeeeeeeeee e eeeee et e ee e e e s e et et es e e et es e s e eees s s s 109
RIGHT() ettt ettt ettt ettt ettt en e 110
ROUND() .ottt ettt ettt ettt ettt en e 111
RPAD() vttt ettt ettt ettt ettt e et e ettt ettt 111
SIGN() vttt ettt ettt ettt 112
SINQ e eeeeeee ettt ettt ettt ettt ettt ettt ettt 113
SINH() ettt ettt ettt ettt 113
SORT() vttt ee ettt e et e et ee et e et et et e e ettt 113
SUBSTRING() «.eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee et es e ettt e e et ee e e 114
TAN(ettt ettt ettt ettt ettt 115
TANH() vttt ettt ettt ettt ettt 115
TRIMO) ettt ettt ettt ee et s ettt et e et ee et n s, 115

Firebird 2.5 Language Reference

120 1§ T 116

LU TP 117

UUID_TO _CHAR() et eeeieeiiite ettt e et e e e e e a e et s e e e e e e eeesnnnes 118

AQOregate FUNCLIONSiiii e e e e e e e e e e e eaaaas 118
N TP 118

L@@ 11 |V) PSPPI 118

1 1 U 119

Y T 119

YN TP 120

SUM () ittt ettt e r e 120

A. Reserved words and KEYWOIdSoiiiiiiii e e e e 121
RESENVE WOIGSuiiiicii e e e e e e e e e e e e e e 121
L= YAV o (o U 124

B. Character sats and COll@tioNScouuiiiiiiiiiii e e aaa s 131
LT 1 o vl (= 132
D. DOCUMENE HISIOTY ..uiitiiiiieii e e e e e e e e e e e e et e e e e e aaeeaenas 133
o I o= 0 o1 o= 134

Vi

List of Tables

6.1. NULLs placement in ordered COIUMNSooiiiiiiiiiiiiie e 62
7.0 POSSIDIE CASTS ..ottt ettt ettt e et et et e et e e e e 88
7.2. Types and ranges Of EXTRACT FESUITSccevuuneiiiiiiieieii e e 96
7.3. Context variables in the SYSTEM NamMESPaCEccuuuiiiiiiieiiiii et 107

vii

Chapter 1. Introduction

Subject matter

What's this book about?

To be updated.

Authorship

To be updated.

Chapter 2. Background

SOL

SQL

flavors

Thisreference describesthe SQL language supported by Firebird. However, there are different subsets
of SQL that apply to different areas and thus should be distinguished. Namely, they are:

e Dynamic SQL (DSQL)

» Procedural SQL (PSQL)
« Embedded SQL (ESQL)
« Interactive SQL (ISQL)

Dynamic SQL is the major part of the language which corresponds to the Part 2 (SQL/Foundation)
part of the SQL specification. DSQL represents statements passed by client applications through the
public Firebird APl and processed by the database engine.

Procedural SQL isthe extention to the Dynamic SQL which additionally allows compound statements
containing local variables, assignments, conditions, loops and other procedural constructs. PSQL
corresponds to the Part 4 (SQL/PSM) part of the SQL specifications. Originally, PSQL extenstions
were available in persistent stored modules (procedures and triggers) only, but recently they became
surfaced in Dynamic SQL aswell (see EXECUTE BLOCK).

Embedded SQL defines the DSQL subset supported by Firebird GPRE - the application which allows
you to embed SQL constructs into your host programming language (C, C++, Pascal, Cobol, etc) and
preprocess those embedded constructs into the proper Firebird API calls. Please note that only a part
of DSQL statements and expressions are supported in ESQL .

Interactive ISQL means the language that can be executed using Firebird 1SQL - the command-line
application for interactive SQL access to databases. As it's a regular client application, its native
language is DSQL. But it also offers afew additional commands

Both DSQL and PSQL subsets are completely presented in this reference. Neither ESQL nor 1SQL
flavors are described here unless mentioned explicitly.

dialects

The SQL diaect is a term that defines the specific features of the SQL language that are available
when accessing the database. SQL dialects can be defined at the database level and at the connection
level. There are three dialects available:

 Dialect 1 stores both date and time information in a DATE datatype and hasa TIMESTAMP data
type which isidentical to DATE. Double quotes are used to delimit string data. The precision for
NUMERIC and DECIMAL datatypesis less than in dialect 3 and if the precision is greater than
9, Firebird internally stores these as long floating point values. BIGINT is not permitted as a data
type. Identifiers are case-insensitive. Generator values are stored as 32-bit integers.

» Didlect 2 is available only on the Firebird client connection and cannot be set in the database. It
is intended to assist debugging of possible problems with legacy data when migrating a database
from dialect 1to 3.

 Didect 3 databases allow numbers (DECIMAL and NUMERIC data types) to be internally stored
as long fixed point values (scaled integers) when the precision is greater than 9. The TIME data
typeis able to be used and stores time data only. The DATE data type stores on date information.
BIGINT isavailable as a 64-hit integer datatype. Double quotes can be used but only for identifiers

Background

that are case-sensitive, not for string datawhich hasto use single quotes. Generator valuesare stored
as 64-hit integers.

Dialect 1 istargeted to provide support for legacy (pre-v6) InterBase applications so that they would
work the sameway with Firebird. Dialect 2 isused asatransition dial ect intended to highlight theissues
while migrating to dialect 3. Newly developed databases and applications are highly recommended
to use diaect 3. Both database and connection dialects should match, except the migration case with
Dialect 2.

This reference describes the semantics of SQL dialect 3 unless specified otherwise.

Error conditions

Processing of the every SQL statement either completes successfully or fails due to a specific error
condition.

Chapter 3. Language structure

Basics: statements, tokens, keywords

To be written.

ldentifiers

To be written.

Literals

To be written.

Operators and specials

To be written.

Comments

To be written.

Chapter 4. Data types

Numeric types
SMALLINT

SMALLINT isthe 16-bit signed integer type.
Syntax:
SMALLI NT

SMALLINT numbers range from -2%° to 211, or from -32768 to 32767.

INTEGER

INTEGER isthe 32-bit signed integer type.
Syntax:

| NTEGER
A shorthand form INT isalso available.

INTEGER numbers range from -2%1 to 2311, or from -2147483648 to 2147483647.

BIGINT data type

BIGINT isthe 64-bit signed integer type.
Syntax:
Bl G NT

BIGINT numbers range from -2 to 251, or from -9223372036854775808 to
9223372036854775807.

@ Note
The BIGINT datatypeisavailablein Dialect 3 only.

FLOAT data type

FLOAT (precision) is the approximate number with the binary precision equal to or greater than
specified by the <precision>.

Syntax:
FLOAT [(precision)]

The precision must be positive, but there's no explicit upper limit (however, it's physicaly limited by
32767). If the precision declaration is omitted, then zero value isimplied.

If the precisionislessthan 8 then the FLOAT datatypeisinternally implemented asasingle precision
floating-point value (commonly it is 32-bit). The FLOAT data type with a greater declared precision

Datatypes

is implemented as a double precision floating-point value (commonly it is 64-bit). Both formats are
covered by the |IEEE 754 standard.

The declared precision is not strictly enforced, it only dictates the choice between the two supported
binary precisions.

REAL datatype

REAL is the approximate number with the binary precision less than 8.
Syntax:
REAL

REAL is a predefined FLOAT data type implemented as a single precision floating-point value, so
please refer to the appropriate section for the details.

DOUBLE PRECISION data type

DOUBLE PRECISION isthe approximate number with the binary precision equal to or greater than 8.
Syntax:
DOUBLE PRECI SI ON

DOUBLE PRECISION isapredefined FLOAT datatype implemented as adouble precision floating-
point value, so please refer to the appropriate section for the details.

LONG FLOAT data type

LONG FLOAT isthe approximate number with the binary precision equal to or greater than 8.
Syntax:
LONG FLOAT [(precision)]

LONG FLOAT isnon-standard alternative to the DOUBLE PRECISION data type, so please refer to
the appropriate section for the details. The optional precision declaration isignored.

NUMERIC data type

NUMERIC (precision, scale) is the exact number with the decimal precision and scale specified by
the <precision> and <scale>.

Syntax:
NUMVERI C [precision [, scale]]

The scale of NUMERIC isthe count of decimal digitsin the fractional part, to theright of the decimal
point. The precision of NUMERIC isthetotal count of decimal digitsin the number.

The precision must be positive, the maximum supported valueis 18. The scale must be zero or positive,
up to the specified precision.

If the scale is omitted, then zero value is implied, thus meaning an integer value of the specified
precision, i.e. NUMERIC (P) isequivalent to NUMERIC (P, 0). If both the precision and the scale are
omitted, then precision of 9 and zero scale are implied, i.e. NUMERIC is equivalent to NUMERIC
(9, 0).

Datatypes

Theinternal representation of the NUMERIC data type may vary. Numerics with the precision up to
(andincluding) 4 are always stored as scaled short integers (SMALLINT). Numericswith theprecision
up to (and including) 9 are always stored as scaled regular integers (INTEGER). Storage of higher
precision numerics depends on the SQL dialect. In Dialect 3, they are stored as scaled large integers
(BIGINT). In Dialect 1, however, large integers are not available, therefore they are stored as double
precision floating-point values (DOUBLE PRECISION).

The effective precision limit for the given value depends on the corresponding storage. For example,
NUMERIC (5) will be stored as INTEGER, thus alowing values in the precision range up to (and
including) NUMERIC (9). So beware that the declared precision is not strictly enforced.

Valuesoutside therange limited by the effective precision are not allowed. Valueswith the scalelarger
than the declared one will be rounded to the declared scale while performing an assignment.

DECIMAL data type

DECIMAL (precision, scale) isthe exact number with the decimal scale specified by the <scale> and
the decimal precision equal to or greater than the value of the specified <precision>.

Syntax:
DECI MAL [precision [, scale]]
A shorthand form DEC is also available.
DECIMAL datatypeisamost identical to the NUMERIC datatype, so please refer to the appropriate

section for the details. The only difference is that DECIMAL is never internally stored as a small
integer, so its minimal effective precision isequal to 9.

@ Note

Accordingly to the SQL standard, NUMERIC is declared to be a strict data type which
enforces the declared precision, while DECIMAL can accept more decimal digits than
declared. In Firebird, however, both enforce the effective precision rather than the
declared one, with NUMERIC being just a bit stricter in the lower precision range.

Character types
CHARACTER data type

CHARACTER (length) is the fixed-length string with the character length equal to the specified
<length>.

Syntax:
CHARACTER [(I ength)] [CHARACTER SET charset]
A shorthand form CHAR is also available.

The declared length must be positive. If the length specification is omitted, length of 1 (one character)
is implied. The maximum supported byte length is 32767, thus the maximum supported character
length depends on the declared character set.

The CHARACTER datatype definition may include the character set name, so that all the characters of
the string value belong to the declared character set. If the character set name is omitted, the database-
wise default character set isimplied. See the complete list of supported character setsin Appendix B.

Datatypes

Vaues of the CHARACTER datatype are right padded with the appropriate padding character up to
the declared length, and are physically stored this way. However, the trailing padding characters are
semantically insignificant and ignored when comparing CHARACTER values. Strings longer than the
declared length are not accepted, unless the excess characters are all equal to the appropriate padding
character, in this case the string is truncated to the declared length.

@ Note
The default padding character is the space character (ASCII code 0x20) and it applies
to the every character set except OCTETS which represents binary strings and thus has
binary zero (ASCII code 0x00) as the padding character.

NATIONAL CHARACTER data type

NATIONAL CHARACTER (length) is the fixed-length string with the character length equal to the
specified <length> and having the predefined character set of 1SO8859 1.

Syntax:
NATI ONAL CHARACTER [(1 ength)]
Shorthand forms NATIONAL CHAR and NCHAR are also available.

Besides having the character set hardcoded, NATIONAL CHARACTER datatypeisabsolutely equal
to the CHARACTER datatype, so please refer to the appropriate section for the details.

CHARACTER VARYING data type

CHARACTER VARYING (length) is the varying-length string with the character length limited by
the specified <length>.

Syntax:
CHARACTER VARYI NG (I engt h) [CHARACTER SET charset]
Shorthand forms CHAR VARYING and VARCHAR are also available.

The declared length is mandatory and it must be positive. The maximum supported byte length is
32765, thus the maximum supported character length depends on the declared character set.

The CHARACTER datatype definition may include the character set name, so that all the characters of
the string value belong to the declared character set. If the character set name is omitted, the database-
wise default character set isimplied. See the complete list of supported character setsin Appendix B.

Values of the CHARACTER VARYING data type are never padded. Internally, the CHARACTER

VARY ING values are prefixed with the 16-bit length counter, so they are stored using the actual string
length. Strings longer than the declared length are not accepted.

NATIONAL CHARACTER VARYING data type

NATIONAL CHARACTER VARYING (length) isthe varying-length string with the character length
limited by the specified <length> and having the predefined character set of 1SO8859 1.

Syntax:
NATI ONAL CHARACTER VARYI NG [(1 ength)]

A shorthand form NATIONAL CHAR VARYING isalso available.

Datatypes

Besides having the character set hardcoded, NATIONAL CHARACTER VARYING data type is
absolutely equal tothe CHARACTER VARYING datatype, so please refer to the appropriate section
for the details.

Date/time types
DATE data type

DATE represents the temporal value containing the year-month-day part.
Syntax:

DATE
DATE values range from 01-Jan-0001 to 31-Dec-9999.

Internally, DATE values are stored as 32-bit signed integers, representing the offset (in days) from
the baseline date (17-Nov-1858).

@ Note

This definition applies to Didect 3 only. In Diaect 1, the DATE data type is a
replacement for the TIMESTAMP data type, thus containing both date and time parts.
See the appropriate section for the details.

TIME data type

TIME represents the tempora value containing the hour-minute-second part, including second
fractions.

Syntax:
TI VE
TIME values range from 00:00:00.0000 AM to 23:59:59.9999 PM.

Internally, TIME values are stored as 32-hit scaled unsigned integers, representing both the number of
seconds passed since the day start (which is abaseline, so that zero time value means amidnight) and
the number of second fractions passed since the start of the current second. The scale value is 10000,
so the supported precision is 1/10000 second (100 microseconds).

@ Note
The TIME datatypeisavailablein Dialect 3 only.

TIMESTAMP data type

TIMESTAMP representsthetemporal val ue containing both year-month-day and hour-minute-second
parts, including second fractions.

Syntax:
TI MESTAMP
TIMESTAMP valuesrange from 01-Jan-0001 00:00:00.0000 AM to 31-Dec-9999 23:59:59.9999 PM.

Internally, TIMESTAMP values are stored as a combination of two 32-bit integers, each representing
its own part (date or time), so itstotal sizeis 64 bits. See prior sections for the storage details.

Datatypes

Binary types
BLOB data type

BLOB isthe data type representing text or binary data of arbitrary length.
Syntax:

BLOB [SUB_TYPE subt ype]
[SEGVENT SI ZE segsi ze]
[CHARACTER SET charset]

Shortcuts:

BLOB (segsi ze)
BLOB (segsi ze, subtype)
BLOB (, subtype)

By default, every blob internally consists of achained list of segments, each up to 64KB in size. Small
segments are combined together so that they could share the same disk page. There are three storage
levels of blobs. Blobs of level O fit on asingle disk page and may even reside at the same data page
where the rest of the fields are stored. Blobs of level 1 are always stored on dedicated disk pages and
consist of the root page (which itself does not store any blob data but contains an inventory of other
data pages) and a number of data pages the blob content is splitted among. Blobs of level 2 extend
the af orementioned scheme by having aroot inventory page which enumerates other inventory pages
that in turn point to the data pages containing the blob contents. This three-level storage layout along
with the database page size establish the practical size limit for blobs, which is equal to 2GB for the
maximum supported page size of 16KB.

So it can be said that BLOB segments represent the logical blob structure rather than the physical
one. They do not directly affect the blob storage on disk and the appropriate low-level 1/0O operations
performed by Firebird internally, but they define the granulation of the blob contents and the way
how the blob is accessed at the interface layer. If you need to read the whole blob, you should iterate
through al the segments. If you need to read just a few bytes in the middle of the blob, you should
read all the segments preceding these bytes.

@ Note
There is also a concept of so called streamed blobs. They are not splitted into separate
segments and are directly accessible for reading and writing from any specified position.
The choice between segmented and streamed blobs is done by the application developer
when creating the blob contents, it's not covered by the BLOB declarationin SQL.

The BLOB sub-type describes the blob contents. While Firebird usually does not guess about the
internal structure of the BLOB data, there are some predefined sub-types that may affect the BLOB
handling. The BLOB sub-type can be declared viaeither the corresponding numeric value, or by using
amnemonic name for the predefined sub-types, e.g.:

BLOB SUB_TYPE 0
BLOB SUB_TEXT BI NARY

If the BLOB sub-type is omitted, sub-type of O (BINARY) is implied. However, if the BLOB
declararion includes the character set (ses below), then sub-type of 1 (TEXT) isimplied.

BL OB sub-types can be negative, zero or positive valuesin the range from -32768 to 32767. Negative
BLOB sub-types are user-defined ones and can be used by application developers to distinguish
between different formats of binary contents. Zero BLOB sub-type is predefined for binary blobs
that are processed transparently without any assumptions about their contents. BLOB sub-type of 1is
predefined for text blobs that are processed similarly to the character data types. They may be treated

10

Datatypes

like very long character strings, including conversions from and to character data types, usage in the
various string-wise operators and built-in functions, and so on. Binary and text blobs can be used by
application developers as well. Positive BLOB sub-types greater than 1 are reserved for internal use,
they are not allowed for user blobs.

The BLOB segment size defines the number of bytes to be processed (read or written) by a single
interface operation with that blob. It must be a positive value limited by 65535 bytes. If the BLOB
segment sizeis omitted, then the value of 80 bytesisimplied. The BLOB segment size also

The BLOB declaration may include the character set name, so that all the characters the blob contents
consists of belong to the specified character set. The character set can be specified for text and binary
blobs only. If this happens for a binary blob, then the sub-type gets implicitly changed to TEXT. If
the character set name is omitted, the database-wise default character set isimplied. See the complete
list of supported character setsin Appendix B.

Arrays

To be written.

Comparison rules

Values of the same data type are compared accordingly to the natural rules of the corresponding data
type. Blobs are compared either byte-wise or character-wise for binary and text blobs respectively,
using their entire contents.

Mixed-type comparisons, however, are processed using the specia priority rules. The value with the
data type of the less priority isimplicitly converted to the data type of the value with greater priority
and then both values are compared naturally. The priority list is the following (starting with the least

priority):

* CHARACTER, CHARACTER VARYING
* SMALLINT

* INTEGER

* BIGINT

* REAL

* DOUBLE PRECISION

 DATE, TIME

* TIMESTAMP

The derived datatypes (NUMERIC, DECIMAL, FLOAT, LONG FLOAT) are compared accordingly
to the priorities of their underlying data types. Scaled numeric values are adjusted to their maximal
scale before comparing.

Character strings are compared without regard to their trailing padding characters, if any. International
character strings (any character set except NONE, OCTETS and ASCII) are compared accordingly to
their collation rules, explicit or implicit.

When DATE or TIME valueis converted to TIMESTAMP, it getsits missing part completed. DATE
values get zero time part (midnight), TIME values get the today's date as their date part.

If one of the comparison arguments is a blob, then custom rules are used. In this case, the second
argument gets converted to a string value (binary or character) and then the string comparison rules

apply.

11

Datatypes

Coercion rules

There are situations where afew values of different data types must provide the unified result. In this
case, those values should be converted to their common (lessrestrictive) datatype. Below aretherules
applied (in the specified order) for those implicit conversions:

 If any datatypeis BLOB, theresult isalso BLOB

¢ If any datatypeisCHARACTER VARYING, or if one datatypeis CHARACTER and another one
is numeric or date/time, theresult is CHARACTER VARYING

* If any datatypeis CHARACTER, theresult isalso CHARACTER

« If any datatype is an approximate numeric, then each data type must be numeric and the result is
an approximate numeric

« If al data types are exact numerics, the result is an exact numeric with the maximal precision and
maximal scale

* If any datatype is DATE, TIME or TIMESTAMP, then each data type must be the same DATE,
TIME or TIMESTAMP and the result is also the same DATE, TIME or TIMESTAMP

If the coercion result is BLOB and thereisany binary blob in thelist, the resulting blob is also binary.
If the coercion resultsin atext blob, the resulting charset is derived using the following rules:

* If any input character set is OCTETS, the resulting character set isalso OCTETS

« If any input character set is neither NONE nor ASCII, it is chosen as the resulting character set

* If any input character set is ASCII, or if any input part is numeric or date/time, result is ASCI|

» Otherwise, result is NONE

Collation rules

To be written.

12

Chapter 5. Common language
elements

Value expressions

To be written.

Select expressions

To be written.

Predicates

To be written.

13

Chapter 6. DML statements
DELETE

Availablein. DSQL, ESQL, PSQL

Description. DELETE removes rows from a database table or from one or more tables underlying
aview. WHERE and ROWS clauses can limit the number of rows deleted. If neither WHERE nor
ROWS is present, DELETE removes all the rowsin the relation.

Syntax.
DELETE
[TRANSACTI ON nane]
FROM {tabl enane | viewnane} [[AS] alias]
[WHERE {search-conditions | CURRENT OF cursornane}]
[PLAN pl an_itemns]
[ORDER BY sort _itens]
[ROAE <> [TO <n>]]
[RETURNI NG <val ues> [| NTO <vari abl es>]]
<>, <n> = Any expression evaluating to an integer.
<val ues> = val ue_expression [, value_expression ...]
<vari abl es> = :varname [, :varnanme ...]

@ Restrictions
* The TRANSACTION directiveisonly availablein ESQL.

* InapureDSQL session, WHERE CURRENT OF isn't of much use,
since there exists no DSQL statement to create a cursor.
* The PLAN, ORDER BY and ROWS clauses are not available in

ESQL.
» The RETURNING clauseisnot availablein ESQL.
» The“INTO<vari abl es>" subclauseisonly availablein PSQL.
* When returning values into the context variable NEW, this name
must not be preceded by a colon (write NEW, not :NEW).

Aliases

Description. An dlias can represent a relation throughout the statement. Attention: the alias
obscures the formal relation name. Once declared, you must use either the alias or nothing to qualify
field names, as the examples show.

Examples.
Supported usage:
delete fromCities where nane starting 'Al ex'
delete fromCities where Cities.nane starting 'Al ex'
delete fromCities C where nanme starting 'Al ex'
delete fromCities C where C nane starting 'Alex'
Not possible:

delete fromCities C where Cities.nane starting 'Alex'

14

DML statements

TRANSACTION

Availablein. ESQL

Description. The optional TRANSACTION clause specifies under which active transaction the
statement should be executed.

Example.

delete transaction tr_cleanup from Buses where date _endlife is not null

Description. A WHERE clause limits the del etion to the rows matching the search condition, or —
in ESQL and PSQL only — to the current row of a named cursor.

Examples.
del ete from People where firstname <> 'Boris' and | astnane <> 'Johnson'
delete fromGCties where current of Cur_Cities; -- ESQ and PSQ only

A delete using WHERE CURRENT OF is called a positioned delete, because it deletes the record at
the current position. A delete using “WHERE <condi t i on>" is called a searched delete, because
the engine has to search for the record(s) meeting the condition.

PLAN

Availablein. DSQL, PSQL
Description. A PLAN clause allows the user to optimize the operation manually.
Example.

del ete from Subni ssi ons
where date_entered < '1-Jan-2002'
pl an (Subm ssions index ix_subm date)

ORDER BY

Availablein. DSQL, PSQL

Description. The ORDER BY clause orders the set before the actual deletion takes place. It only
makes sense in combination with ROWS, but is aso valid without it.

Examples.
del ete from Purchases order by date rows 1 -- del etes ol dest pul
delete from Sal es order by custno desc rows 1 to 10 -- deletes from high
del ete from Sal es order by custno desc -- deletes all sales, ORDER BY cl

ROWS

Availablein. DSQL, PSQL
Description. Limitsthe amount of rows deleted to a specified number or range.

Syntax.

15

DML statements

ROWS <mp [TO <n>]

<k, <n> ::= Any expression evaluating to an integer.

With asingle argument m the deletion is limited to the first mrows of the dataset defined by the table
or view and the optional WHERE and ORDER BY clauses.

Points to note:

* |[f m> the total number of rowsin the dataset, the entire set is del eted.
e |f m=0, no rows are deleted.
e |f m<O0, anerrorisraised.

With two arguments mand n, the deletion is limited to rows mto n inclusively. Row numbers are
1-based.

Points to note when using two arguments:

* |f m> the total number of rowsin the dataset, no rows are del eted.

» |f mlieswithin the set but n doesn't, the rows from mto the end of the set are deleted.
e Ifm<lorn <1, anerrorisraised.

e |f n=m1, norows are deleted.

e |fn<mdl, anerrorisraised.

Examples.
del ete from popgroups order by nane desc rows 1 -- wll probably delete
del ete from popgroups order by forned rows 5 -- deletes 5 ol dest grou
del ete from popgroups rows 5 to 12 -- no ordering, may delete any 8 |

RETURNING

Availablein. DSQL, PSQL

Description. A DELETE statement removing at most one row may optionaly include a
RETURNING clause in order to return values from the deleted row. The clause, if present, need not
contain all the relation's columns and may also contain other columns or expressions. When returning
into the NEW context variable within atrigger, the preceding colon must be omitted.

Examples.

del ete from Schol ars
where firstnane = 'Henry' and | astnanme = 'Hi ggins'
returning | astname, fullnane, id

del ete from Dunbbel|s
order by iq desc
rows 1
returning lastname, iq into :lname, :iq;

delete from TenpSales ts
where ts.id = tenpid
returning ts.qty into new.qty; -- not

“

‘new. gqty”
Notes.

e InDSQL, astatement withaRETURNING clause always returns exactly onerow. If no record was
actually deleted, the fieldsin this row are all NULL. This behaviour may change in alater version
of Firebird.

16

DML statements

e In PSQL, if no row was deleted, nothing is returned, and the target variables keep their existing
values.

EXECUTE BLOCK

Availablein. DSQL

Description. Executesablock of PSQL code asif it were astored procedure, optionally with input
and output parameters and variable declarations. This allows the user to perform “on-the-fly” PSQL
within aDSQL context.

Syntax.

EXECUTE BLOCK [(<i npar ans>)]
[RETURNS (<out par ans>)]

AS

[<decl arati ons>]
BEG N

[<PSQL st at ement s>]
END

<i npar ans>

<out par ans>

<par am decl >
<type>

<decl arati ons>
<PSQL st at enent s>

<param.decl > = ? [, <inparanms>]

<par am decl > [, <outparans>]

paramane <type> [NOT NULL] [COLLATE coll ation]
sql _datatype | [TYPE OF] domain | TYPE OF COLUWN |
See PSQL:: DECLARE for the exact syntax

See the PSQ. chapter

Examples.

This example injects the numbers 0 through 127 and their corresponding ASCI|
charactersinto the table ASCII TABLE:

execut e bl ock

as
declare i int = 0;
begi n
while (i < 128) do
begi n
insert into AsciiTable values (:i, ascii_char(:i));
i =i + 1;
end
end

The next example calculates the geometric mean of two numbers and returns it to
the user:

execute bl ock (x double precision = ?, y double precision = ?)
returns (gnean doubl e preci sion)
as
begi n
gnmean = sqrt(x*y);
suspend;
end

Because this block has input parameters, it has to be prepared first. Then the
parameters can be set and the block executed. It depends on the client software how
this must be done and even if it is possible at all — see the notes below.

17

DML statements

Our last example takes two integer values, snal | est and | ar gest . For all the
numbersintherangesnal | est ..| ar gest , the block outputs the number itself,
its square, its cube and its fourth power.

execute block (smallest int = ?, largest int = ?)
returns (nunber int, square bigint, cube bigint, fourth bigint)
as
begi n
nunmber = smal | est;
whi I e (nunber <= largest) do

begi n
square = nunber * nunber;
cube = nunber * square;
fourth = nunber * cube;
suspend;
nunber = nunber + 1;

end

end

Again, it depends on the client softwareif and how you can set the parameter values.

Input and output parameters

Executing a block without input parameters should be possible with every Firebird client that allows
the user to enter hisor her own DSQL statements. If thereareinput parameters, thingsget trickier: these
parameters must get their values after the statement is prepared but beforeit is executed. Thisrequires
special provisions, which not every client application offers. (Firebird's own isqgl, for one, doesn't.)

The server only accepts question marks (“?”) as placeholders for the input values, not “: a”,
“: MyPar anf etc,, or literal values. Client software may support the “: xxx” form though, and will
preprocess it before sending it to the server.

If the block has output parameters, you must use SUSPEND or nothing will be returned.

Output is always returned in the form of aresult set, just aswith a SELECT statement. Y ou can't use
RETURNING_VALUES or execute the block INTO some variables, even if there is only one result
row.

For more information about parameter and variable declarations, [TYPE OF] donai n, TYPE OF
COLUMN etc., consult the chapter on Procedural SQL, in particular PSQL:: DECLARE.

Statement terminators

Some clients, especially those alowing the user to submit several statements at once, may require you
to surround the EXECUTE BLOCK statement with SET TERM lines, like this:

set term#;
execute block (...)
as
begi n
st at enent 1;
st at enent 2;
end
#
set term ;#

Asan example, in Firebird'sisgl client you must set the terminator to something other than“; ” before
you type in the EXECUTE BLOCK statement. If you don't, isgl will try to execute the part you have
typed so far as soon as you hit Enter after aline with a semicolon.

18

DML statements

EXECUTE PROCEDURE

Availablein. DSQL, ESQL, PSQL

Description. Executesastored procedure (SP), optionally taking input parameters and/or returning

output values.

Syntax.

EXECUTE PROCEDURE
[TRANSACTI ON transacti on]

procna
[<in_i

nme
tenr [, <in_itemr ...]]

[RETURNI NG VALUES <out _iten> [, <out_itemr ...]]

<in_itenpr

<out _itenp

<i npar ane
<outvar >
<nul | i nd>

&

Examples.
In PSQL (wit

execute p

<i nparan® [<nul | i nd>]

<outvar> [<nul l'ind>]

an expression evaluating to the decl ared paraneter type
a host | anguage or PSQL variable to receive the return v
[1 NDI CATOR] : host _| ang_i nt var

Notes

* In ESQL, input parameters must be literals or host language
variables. For output parameters, host variables must be specifiedin
the RETURNING_VALUES clause. NULL indicators must be host
language variables of type integer, with less than zero indicating
NULL and zero or greater indicating not NULL (which meansthat a
proper value is present in the corresponding parameter).

» In PSQL, input parameters may be any expression that resolves to
the expected type. For output parameters, local variables must be
specified in the RETURNING_VALUES clause.

e In DSQL, input parameters may be any expression that resolvesto
the expected type. The handling of output parameters depends on
the client software.

e In PSQL and DSQL, NULL indicators are neither valid nor
necessary. NULLs are passed via the input/output parameters
themselves.

» TRANSACTION clauses are not supported in PSQL.
» In ESQL, variable names used as parameters or outvars must be

preceded by a colon (“:"). In PSQL the colon is generally optional,
but forbidden for the trigger context variables OLD and NEW.

h optional colons):

rocedure MakeFul | Nane

:FirstNanme, : M ddl eNane, :LastNane

r et ur ni

ng_val ues : Ful | Nane;

The same call in ESQL (with obligatory colons):

exec sql

19

DML statements

execut e procedure MakeFul | Nane
:FirstNane, :Mddl eNane, :LastNane
returni ng_val ues : Ful | Nane;

...and in Firebird's command-line utility isgl (with literal parameters):

execut e procedure MakeFul | Nane
'J', 'Edgar', 'Hoover';

Note: In isgl, don't use RETURNING_VALUES. Any output values are shown
automatically.

Finally, a PSQL example with expression parameters:

execut e procedure MakeFul | Nane
"M./Ms. " || FirstNane, M ddl eNanme, upper (Last Nane)
returni ng_val ues Ful | Nane;

INSERT

Availablein. DSQL, ESQL, PSQL

Description. Addsrows to adatabase table or to one or more tables underlying aview. If thefield
values are given in aVALUES clause, exactly one row is inserted. The values may also be provided
by a SELECT statement, in which case zero to many rows may be inserted. With the DEFAULT
VALUES clause, no values are provided at al and exactly one row isinserted.

Syntax.

| NSERT [TRANSACTI ON nane]
| NTO {tabl enane | vi ewnane}
{ DEFAULT VALUES | [(<colum_list>)] <val ue_source>}
[RETURNI NG <val ue_|ist> [INTO <vari abl es>]]

<columm_Ilist> = colnane [, colname ...]

<val ue_source> = VALUES (<value_list>) | <select_stnt>
<val ue_|ist> = value_expression [, value_expression ...]
<vari abl es> = :varnane [, :varname ...]

<sel ect _stnt>

@ Restrictions
* The TRANSACTION directiveisonly availablein ESQL.

» The RETURNING clauseisnot availablein ESQL.

* The“INTO<var i abl es>" subclauseisonly availablein PSQL.

* When returning values into the context variable NEW, this name
must not be preceded by acolon (“:).

» No column may appear more than once in the column list.

INSERT ... VALUES

The VALUES list must provide avalue for every column in the column list, in the same order and of
the correct type. If the column list is absent, values must be provided for every column in the table
or view (computed columns excluded).

a SELECT or UNI ON whose result set fits the target c

String literals may optionally be preceded by a character set name, using introducer syntax, in order
to let the engine know how to interpret the input.

Examples.

20

DML statements

insert into cars (nake, nodel, year)
values (' Ford', 'T, 1908)

insert into cars
values ('Ford', 'T, 1908, 'USA , 850)

/* assuming that the colums of table Cars are: nmmke, nodel, year, countr

insert into People
val ues (_1S08B859 1 'Hans-Jorg Schafer') -- notice the ' ' prefix

INSERT ... SELECT

Here, the output columns of the SELECT statement must provide a value for every target column in
the column list, in the same order and of the correct type. If the column list is absent, values must be
provided for every column in the table or view (computed columns excluded).

Examples.

insert into cars (nake, nodel, year)
sel ect (make, nodel, year) from new cars

insert into cars
select * from new cars

/* assuming that table New cars has the exact same columms as table Cars °

insert into Menbers (nunber, nane)
sel ect nunber, nane from NewMenbers where Accepted = 1
uni on

sel ect nunber, name from SuspendedMenbers where Vindicated = 1

Of course, the column names in the source table need not be the same as those in the target table.
Any type of SELECT statement is permitted, as long as its output columns exactly match the insert

columnsin number, order and type. Types need not be exactly the same, but they must be assignment-
compatible.

INSERT ... DEFAULT VALUES

The DEFAULT VALUES clause allows insertion of a record without providing any values at all,
neither directly nor fromaSELECT statement. Thisisonly possibleif every NOT NULL or CHECKed
column in the table either has a valid default declared or gets such avalue from a BEFORE INSERT
trigger. Furthermore, triggers providing required field values must not depend on the presence of input

values.

Example.

insert into journal default val ues
returning entry_id

The RETURNING clause

AnINSERT statement adding at most one row may optionally includeaRETURNING clausein order
to return valuesfrom theinserted row. The clause, if present, need not contain all of theinsert columns
and may also contain other columns or expressions. The returned values reflect any changes that may
have been made in BEFORE triggers, but not those in AFTER triggers.

Examples.

21

DML statements

insert into Scholars (firstname, |astnane, address, phone, email)
values ('Henry', '"Higgins', '27A Wnpole Street', '3231212', null)
returning | astname, fullnanme, id

insert into Dunbbells (firstname, |astnane, iq)
sel ect fnane, Inane, iq fromFriends order by iq rows 1
returning id, firstnane, iq into :id, :fname, :igq;

Notes.
* RETURNING isonly supported for VALUES inserts and singleton SELECT inserts.

* In DSQL, a statement with a RETURNING clause always returns exactly one row. If no record
was actually inserted, the fields in this row are al NULL. This behaviour may change in a later
version of Firebird. In PSQL, if no row was inserted, nothing is returned, and the target variables
keep their existing values.

» The RETURNING clauseisnot availablein ESQL.

Inserting into BLOB columns

Inserting into BLOB columns is only possible under the following circumstances:

1. The client application has made special provisions for such inserts, using the Firebird API. In this
case, the modus operandi is application-specific and outside the scope of this manual.

2. Thevalueinserted isatext string of at most 32767 bytes. Please notice: if the value is not a string
literal, beware of concatenations, as these may exceed the maximum length.

3. Youareusingthe“INSERT ... SELECT” form and one or more columnsin theresult set are BLOBs.

4. You use the INSERT CURSOR statement (ESQL only).

INSERT CURSOR

Availablein. ESQL

Description. In Embedded SQL only, you can insert data, in segment-sized chunks, into aBLOB
through a special BLOB cursor. As you can only write one segment at atime, thisisusualy donein
a (host language) 1oop.

Syntax.

| NSERT CURSOR bl obcursor VALUES (: buf [INDI CATOR] :size)

bl obcur sor = an opened BLOB insert cursor

buf = host variable containing the data segment

si ze = data size in bytes; nmust be less than or equal to the se
Example.

exec sql

i nsert cursor cur_jpeg values (:inmgbuf indicator :seglen);

Please notice that, unlike INSERT, INSERT CURSOR does not write anything to the table itself.
The segments are written to a BLOB structure which, at that time, “floats’ freely in the database,
unconnected to any other object.

After inserting all the segmentsin thismanner, you must close the BLOB cursor and perform aregular
INSERT statement to insert the BLOB ID (and possibly other fields) into the table.

22

DML statements

Updating BLOB fieldsisdonein the sameway, except that you finalize the entire operation by issuing
aregular UPDATE statement instead of an INSERT statement.

A completediscussion of ESQL statementsisoutsidethe scope of thisdocument. For moreinformation
about ESQL, please consult the InterBase 6 Embedded SQL Guide (google for 60EnmbedSQL. zi p).

MERGE

Availablein. DSQL, PSQL

Description. Mergesdatainto atable or updatable view. The source may atable, view or “anything
you can SELECT from” in general. Each source record will be used to update one or more target
records, insert a new record in the target table, or neither. The action taken depends on the provided
condition and the WHEN clause(s). The condition will typically contain acomparison of fieldsin the
source and target relations.

Syntax.

MERGE I NTO target [[AS] target-alias]
USI NG source [[AS] source-alias]
ON condi tion
WHEN MATCHED THEN UPDATE SET col name = value [, colname = value ...]
WHEN NOT MATCHED THEN | NSERT [(<col ums>)] VALUES (<val ues>)

t ar get = a table or updatable view

source = a table, GIT, view, selectable SP, derived table or CTE
<col unmms> = colnanme [, colname ...]

<val ues> = val ue [, value o]

Note: It is allowed to provide only one of the WHEN cl auses
Examples.

nerge into books b
usi ng purchases p
on p.title = b.title and p.type = 'bk'
when mat ched t hen
update set b.desc = b.desc || '; ' || p.desc
when not mat ched then
insert (title, desc, bought) values (p.title, p.desc, p.bought)

nerge into custoners c
using (select * fromcustoners_delta where id > 10) cd
on (c.id = cd.id)
when mat ched then update set name = cd. nanme
when not matched then insert (id, name) values (cd.id, cd.nane)

@ Note
WHEN NOT MATCHED should be seen from the point of view of the source (the
relationinthe USING clause). That is: if asourcerecord doesn't haveamatchin thetarget
table, the INSERT clause is executed. Conversely, records in the target table without a
matching source record don't cause anything to happen.

@ Warning
If the WHEN MATCHED clauseis present and multiple source records match the same
record(s) in the target table, the UPDATE clause is executed for all the matching source

23

DML statements

records, each update overwriting the previous one. This is non-standard behaviour:

SQL-2003 specifies that an exception must be raised in such cases.

SELECT

Availablein. DSQL, ESQL, PSQL

The SELECT statement retrieves data from the database and hands them to the application or the
enclosing SQL statement. Dataarereturned in zero or morerows, each contai ning one or more columns

or fields. Thetota of rowsreturned is the result set of the statement.
Global syntax.

SELECT
[TRANSACTI ON nane]
[FIRST <np] [SKIP <n>]
[DISTINCT | ALL] <col ums>
[NTO <host-varli st>]
FROM source [[AS] alias]
[<j 0i ns>]
[WHERE <condi ti on>]
[GROUP BY <grouping-1list>
[HAVI NG <aggr egat e-condi ti on>]]
[PLAN <pl an- expr >]
[UNION [DI STINCT | ALL] <ot her-sel ect >]
[ORDER BY <ordering-1ist>]
[ROAB m [TO n]]
[FOR UPDATE [OF <col ums>]]

[WTH LOCK]
[NTO <PSQL-varli st>]

The only mandatory parts of the SELECT statement are:

» The SELECT keyword, followed by a columns list. This part specifies what you want to retrieve.

» The FROM keyword, followed by a selectable object. Thistells the engine where you want to get

it from.

Initsmost basic form, SELECT retrieves anumber of columns from asingle table or view, like this:

sel ect id, name, address
from contacts

Or, to retrieve dl the columns:

select * from sal es

In practice, the rows retrieved are often limited by a WHERE clause. The result set may be sorted
by an ORDER BY clause, and FIRST, SKIP or ROWS may further limit the number of output rows.
The column list may contain all kinds of expressions instead of just column names, and the source
need not be a table or view: it may also be a derived table, a common table expression (CTE) or a
selectable stored procedure (SP). Multiple sources may be combined in a JOIN, and multiple result

sets may be combined in a UNION.

The following sections discuss the available SELECT subclauses and their usage in detail.

The TRANSACTION directive

Availablein. ESQL

24

DML statements

This ESQL-only directive tells the engine to execute the statement under the specified transaction,
which must have been previously declared and opened, e.g.:

sel ect transaction tr_getsales
partno, desc, price, anount
fromv_sal es
where custno = 101

FIRST, SKIP and ROWS

Availablein. DSQL, PSQL
Syntax.

SELECT
[FIRST <np] [SKIP <n>]
FROM . . .

<k, <n> ::= integer-literal | query-paraneter | (integer-expression)
or
SELECT
FROM . ..
RCN\S m [TO n]
m n ::= integer-expression

Please notice: FIRST and SKIP are Firebird-specific, non-SQL-compliant
keywords. Y ou are adviced to use the ROWS syntax wherever possible.

FIRST limits the output of a query to the first so-many rows. SKIP will suppress the given number
of rows before starting to return output.

FIRST and SKIP are both optional. When used together asin “FIRST mSKIP n”, the n topmost rows
of the output set are discarded and the first mrows of the remainder are returned.

SKIP 0 isalowed, but of course rather pointless. FIRST 0 is also allowed and returns an empty set.
Negative SKIP and/or FIRST valuesresult in an error.

If aSKIPlands past the end of the dataset, an empty set isreturned. If the number of rowsin the dataset
(or the remainder after a SKIP) isless than the value given after FIRST, that smaller number of rows
isreturned. These are vaid results, not error conditions.

Any argument to FIRST and SKIP that is not an integer literal or an SQL parameter must be enclosed
in parentheses. Thisimplies that a subselect must be enclosed in two pairs of parentheses.

Examples

The following query will return the first 10 names from the People table:

select first 10 id, nanme from Peopl e
order by nanme asc

The following query will return everything but the first 10 names:

sel ect skip 10 id, nane from People
order by nane asc

25

DML statements

And this one returns the last 10 rows. Notice the double parentheses:

sel ect skip ((select count(*) - 10 from People))
id, nanme from Peopl e
order by nane asc

This query returns rows 81-100 of the People table:

select first 20 skip 80 id, nanme from Peopl e
order by nanme asc

Assaid, FIRST and SKIP are not standard SQL . In new code, it's better to use the standards-compliant
ROWS keyword.

Contrary to FIRST and SKIP, ROWS accepts any kind of integer expression as argument without
parentheses. (Of course, parentheses may be necessary within the expression, and a subselect still
needs to be parenthesized.)

With a single argument m ROWS returns the first mrows of the dataset.
Points to note:

» |f m> thetotal number of rowsin the dataset, the entire set is returned.
» If m=0, an empty set is returned.
e |f m< O, anerrorisraised.

With two arguments mand n, rows mto n of the dataset are returned, inclusively. Row numbers are
1-based.

Points to note when using two arguments:

 If m> thetotal number of rowsin the dataset, an empty set is returned.

 If mlieswithin the set but n doesn't, the rows from mto the end of the set are returned.
e Ifm<lorn<1, anerrorisraised.

o If n =m1, an empty set isreturned.

e If n <m1, anerror israised.

The SQL -compliant ROWS syntax obviatesthe need for FIRST and SKIP, except in one case: a SKIP
without FIRST, which returns the entire remainder of the set after skipping a given number of rows.
(Well, thisis not entirely true. You can supply a second argument that you know is bigger than the
number of rows in the set, or request COUNT(*) with a subselect. But SKIP is simpler and clearer
here.)

You cannot use ROWS together with FIRST and/or SKIP in a single SELECT statement, but you
can use one form in the top-level statement and the other in subselects, or use the two syntaxes in
different subselects.

When used with aUNION, the ROWS subclause appliesto the UNION as awhole and must be placed
after the last SELECT. If you want to limit the output of one or more individual SELECTs within
the UNION, you have two options: either use FIRST/SKIP on those SELECT statements (probably
of limited use, as you can't use ORDER BY on individual selects within a union), or convert them to
derived tables with ROWS clauses.

Below are the previous examples rewritten using ROWS. Notice that ROWS is placed at or near the
end of the statement, whereas FIRST and SK1P come even before the columns list.

select id, name from Peopl e
order by nanme asc
rows 1 to 10

sel ect id, name from Peopl e
order by nane asc

26

DML statements

rows 11 to (select count(*) from Peopl e)

select id, name from Peopl e
order by nane asc
rows (select count(*) - 9 from Peopl e)
to (select count(*) from People)

select id, nane from Peopl e
order by nanme asc
rows 81 to 100

Both FIRST/SKIP and ROWS can be used without an ORDER BY clause, but thisrarely makes sense,
unless you want to just “get an idea” about a table without being interested in the actual data. In that
case, a statement like “select * from UnknownTable rows 20" may give you a quick insight without
risking lots of network traffic and thousands of data rows flying across your screen.

The column list

The column list contains one or more comma-separated value expressions. Each expression provides
avalue for one output column, except * (“star”), which stands for al the columnsin arelation (i.e.
atable, view or selectable stored procedure).

Syntax.

SELECT

[...]
[DI STINCT | ALL] <output-colum> [, <output-colum> ...]

[...]
FROM . . .

[qualifier.]*
| <val ue-expression> [COLLATE col l ation] [[AS]

<out put - col unm>

[qualifier.]tabl e-col um
| [qualifier.]viewcolum
| [qualifier.]selectable-SP-outparm
| constant

| context-variable

| function-call

|

|

|

<val ue- expr essi on>

si ngl e-val ue- subsel ect

CASE- construct

“any ot her expression returning a single
value of a Firebird data type or NULL"

a relation nanme or alias
a valid collation nane (only for character type

qualifier
col l ation

It is aways valid to qualify a column name (or “* ") with the name or dias of the table, view or
selectable SP to which it belongs, followed by a dot. Qualifying becomes mandatory if the column
name occurs in more than one relation taking part in ajoin. Qualifying “*” is mandatory if it isn't the
only item in the column list.

Please notice that aliases obfuscate the original relation name: once a table, view or SP has been
aliased, you can only use the adlias as a qualifier; the relation name itself has become unavailable.

The column list may optionally be preceded by one of the keywords DISTINCT or ALL. DISTINCT
filtersout any duplicaterows. That is, if two or more rows havethe samevaluesin every corresponding
column, only one of them isincluded in the result set. ALL shows all the rows including duplicates.
ALL isthe default and thereforerarely used; it is supported for reasons of SQL compliance.

27

DML statements

A COLLATE clause will not change the appearance of the column as such. However, if the specified
collation changes the case or accent sensitivity of the column, it may influence:

» Theordering, if an ORDER BY clauseis aso present and the columnisinvolved in it.
» Grouping, if the column is part of a GROUP BY clause.
» Therowsretrieved (and hence the total number of rows in the result set), if DISTINCT is used.

Examples of SELECT queries with different types of column lists

A simple SELECT using only column names:

sel ect cust_id, cust_name, phone
from custoners
where city = 'London’

A query featuring a concatenation expression and a function call in the columns list:

select "M./Ms. ' || lastnanme, street, zip, upper(city)
from contacts
where date | ast_purchase(id) = current_date

A query with two subselects:

sel ect p.full name,
(sel ect name fromclasses ¢ where c.id
(sel ect name frommentors mwhere mid
frompupils p

p.cl ass) as cl ass,
p. nentor) as nentor

The following query accomplishes the same as the previous one using joinsinstead of subselects:

sel ect p.full nane,
c. name as cl ass,
m nanme as nentor
frompupils p
join classes c on c.id
join nentors mon mid

p.cl ass
p. ment or

This query uses a CASE construct to determine the correct title, e.g. when sending mail to a person:

sel ect case upper(sex)
when 'F' then 'Ms.'
when 'M then 'M.'
else "’
end as title,
| ast nane,
addr ess
from enpl oyees

Querying a selectable stored procedure:;

select * frominteresting transactions(2010, 3, 'S')
order by anount

Selecting from columns of a derived table. A derived table is a parenthesized SELECT statement
whose result set is used in an enclosing query asiif it were aregular table or view. The derived table
is shown in bold here:

sel ect fieldcount,
count(relation) as numtabl es
from (select r.rdb$rel ation_nanme as relation,
count(*) as fieldcount

28

DML statements

from rdb$relations r
join rdb$relation_fields rf
on rf.rdb$relation_name = r.rdb$rel ati on_nane
group by rel ation)
group by fiel dcount

Asking the time through a context variable (CURRENT_TIME):
sel ect current _tinme fromrdb$dat abase

For those not familiar with RDB$DATABASE: this is a system table that is present in all Firebird
databases and is guaranteed to contain exactly one row. Although it wasn't created for this purpose,
it has become standard practice among Firebird programmers to select from this table if you want to
select “fromnothing”, i.e., if you need datathat are not bound to aany table or view, but can be derived
from the expressionsin the output columns alone. Another exampleis:

sel ect power (12, 2) as twelve_squared, power (12, 3) as twelve_cubed
from rdb$dat abase

Finally, an example where you select some meaningful information from RDB$SDATABASE itself:
sel ect rdb$character_set nane from rdb$dat abase

Asyou may have guessed, thiswill give you the default character set of the database.

Selecting INTO variables

Availablein. ESQL, PSQL

In PSQL code or embedded SQL, the results of a SELECT statement may be loaded — on a row-by-
row basis—into local variables (PSQL) or host languages variables (ESQL). In fact, this is often the
only way to do anything with the returned values at all. The number, order and types of the variables
must match the columns in the output row.

A “plain” SELECT statement can only be used in ESQL or PSQL if it returns at most one row —in
other words, if it is a singleton select. For multirow selects, PSQL provides the FOR SELECT loop,
which is discussed in the PSQL chapter. In addition, both PSQL and ESQL support the DECLARE
CURSOR statement, which binds a named cursor to a SELECT statement. The cursor can then be

used to walk the result set.
Syntax. In embedded SQL, the INTO clause is placed between the column list and the FROM
keyword:
SELECT
[...]
<colum-1ist>
[NTO <vari abl e-1i st >]
FROM . ..
[...]
<variable-list> ::= :hostvar [, :hostvar ...]

In PSQL, the INTO clause must appear at the very end of the statement:

SELECT
[...]
<colum-1ist>
FROM . ..
[...]
[NTO <vari abl e-1i st >]

29

DML statements

<variable-list> ::= [:]psqlvar [, [:]psqglvar ...]

Notice that in PSQL, the colons before the variable names are optional .

Examples
In ESQL, withm n_ant ,avg_ant and max_ant host language (e.g. C) variables:

sel ect m n(ampbunt), avg(cast(anobunt as float)), nax(anount)
into :mn_ant, :avg ant, :nmax_ant
from orders
where artno = 372218;

In PSQL, with mi n_ant , avg_ant and max_ant previously defined PSQL variables or output
parameters:

sel ect min(amount), avg(cast(anount as float)), nmax(anount)
from orders
where artno = 372218
into mn_ant, avg ant, nax_ant;

(The CAST serves to make the average a broken number. Otherwise — since anount is presumably
an integer field —it would be truncated to the nearest lower integer.)

InaPSQL trigger:

select list(nane, ', ')
from persons p
where p.id in (new father, new nother)
i nto new. par ent nanes;

The FROM clause

The FROM clause specifies the source(s) from which the data are to be retrieved. Inits simplest form,
thisisjust asingle table or view. But the source can also be a selectable stored procedure, a derived
table or acommon table expression. Multiple sources can be combined using various types of joins.

This section concentrates on single-source selects. Joins are discussed in the next section.

Syntax.
SELECT
FROM <sour ce>
[<j oi ns>]
[...]
<source> .= {table
| view
| sel ectabl e-stored-procedure [(args)]
| <derived-table>
| <conmmon-tabl e- expressi on>}
[[AS] alias]
<derived-t abl e> .= (select-statenent) [[AS] alias]

[(<col um-al i ases>)]

<comon-t abl e- expressi on>

;= WTH [RECURSI VE] <cte-def> [, <cte-def> ...

30

DML statements

sel ect - st at enent

<ct e-def > nane [(<colum-aliases>)] AS (select-statenent)

<columm-aliases> ::= colum-alias [, colum-alias ...]
Selecting from a table or view

When selecting from a single table or view, the FROM clause need not contain anything more than
the name. An alias may be useful or even necessary if there are subsel ects that refer to the main select
statement (as they often do — subqueries like this are called correlated subqueries).

Examples

sel ect id, name, sex, age fromactors
where state = ' Chio'

select * from birds
where type = 'flightless’
order by famly, genus, species

sel ect firstnane,
ni ddl enane,
| ast nane,
dat e_of birth,
(sel ect nane from schools s where p.school = s.id) school nane
frompupils p
where year_started = '2012
order by school nane, date_of birth

Selecting from a stored procedure
A selectable stored procedure is a procedure that:

 contains at least one output parameter, and
* utilizes the SUSPEND keyword so the caller can fetch the output rows one by one, just as when
selecting from atable or view.

The output parameters of a selectable stored procedure correspond to the columns of aregular table.
Selecting from a stored procedure without input parametersisjust like selecting from atable or view:

sel ect * from suspicious_transactions
wher e assi gnee = 'John'

Any required input parameters must be specified after the procedure name, enclosed in parentheses:

sel ect nane, az, alt fromvisible stars('Brugge', current _date, '22:30")
where alt >= 20
order by az, alt

Vaues for optional parameters (that is, parameters for which default values have been defined) may
be omitted or provided. However, if you provide them only partly, the parameters you omit must all
be at the tail end.

Supposing that the procedure vi si bl e_stars from the previous example has two optional
parameters: m n_magn (numeric(3,1)) andspect ral _cl ass (varchar(12)), thefollowing queries
aredl valid:

sel ect name, az, alt fromvisible stars(' Brugge', current_date, '22:30")

31

DML statements

sel ect nane, az, alt fromvisible stars('Brugge', current_date, '22:30",
sel ect nane, az, alt fromvisible stars('Brugge', current_date, '22:30",

But this oneisn't, because there'sa“hole” in the parameter list:

sel ect nane, az, alt fromvisible stars('Brugge', current _date, '22:30',
An dliasfor a selectable stored procedure is specified after the parameter list:

sel ect nunber,
(select name from contestants ¢ where c.nunber = gw. nunber)
from get_winners('#34517', 'AMS') gw

If you qualify a column (output parameter) with the full procedure name, don't include the parameter
list:

sel ect nunber,
(sel ect name from contestants ¢ where c.nunber = get_w nners. nunbel
from get_winners(' #34517', ' AMS')

Selecting from a derived table

A derived tableisavalid SELECT statement enclosed in parentheses, optionally followed by atable
alias and/or column aliases. The result set of the statement acts as a virtual table which the enclosing
statement can query.

Derived tables are discussed in detail in the section Derived tables (* SELECT FROM SELECT”).
Here, we only give an example.

Suppose we have a table COEFFS which contains the coefficients of anumber of quadratic equations
we have to solve. It has been defined like this:

create table coeffs (
a doubl e precision not null,
b doubl e precision not null,
¢ doubl e precision not null,
constraint chk_a not_zero check (a <> 0)

)

Depending on the values of a, b and ¢, each egquation may have zero, one or two solutionsin #. It
is possible to find these solutions with a single-level query on table COEFFS, but the code will 1ook
rather messy and several values (like the discriminant) will have to be calculated multiple times per
row. A derived table can help keep things clean here:

sel ect
iif (D>=20, (-b - sqrt(D)) / denom null) sol _1,
iif (D> 0, (-b + sqrt(D)) / denom null) sol_2
from
(select b, b*b - 4*a*c, 2*a fromcoeffs) (b, D, denon)

If we want to show the coefficients next to the solutions (which may not be a bad idea), we can ater
the query like this:

sel ect
a, b, c,
iif (D> 0, (-b - sqrt(D)) / denom null) sol 1,
iif (D> 0, (-b +sqrt(D)) / denom null) sol 2
from
(select a, b, ¢, b*b - 4*a*c as D, 2*a as denom
from coeffs)

32

DML statements

Notice that whereas the first query used a column aliases list for the derived table, the second adds
aliases internally where needed. Both methods work, as long as every column is guaranteed to have
aname.

Selecting from a CTE

A common table expression or CTE isamore complex, but also more powerful type of derived table. A
preamble, starting with the keyword WITH, defines one or more named CTE's, each optionally with a
column aliaseslist. The main query, which followsthe preamble, can then accessthese CTE's asif they
were regular tables or views. Once the main query has run to completion, the CTE's go out of scope.

For afull discussion of CTE's, please refer to the section Common Table Expressions (“ WITH ... AS...
SELECT").

Thefollowing is arewrite of our derived table example asa CTE:

with vars (b, D, denon) as (
select b, b*b - 4*a*c, 2*a fromcoeffs
)

sel ect
iif (D> 0, (-b - sqgrt(D)) / denom null) sol _1,
iif (D> 0, (-b + sqgrt(D)) / denom null) sol_2
fromvars

Except for the fact that the calculations that have to be made first are now at the beginning, this
isn't a great improvement over the derived table version. But we can now also eliminate the double
calculation of sqrt(D) for every row:

with vars (b, D, denon) as (
select b, b*b - 4*a*c, 2*a fromcoeffs
)l
vars2 (b, D, denom sqrtD) as (
select b, D, denom iif (D >= 0, sqrt(D), null) fromvars
)

sel ect
iif (D> 0, (-b - sqrtD) / denom null) sol 1,
iif (D> 0, (-b +sqrtD) / denom null) sol _2
fromvars2

The codeis alittle more complicated now, but it might execute more efficiently (depending on what
takes more time: executing the SQRT function or passing the values of b, D and denomthrough an
extra CTE). Incidentally, we could have done the same with derived tables, but that would involve
nesting.

Joins

Joins combine data from two sources into asingle set. Thisis done on arow-by-row basis and usually
involves the checking of ajoin condition in order to determine which rows should be merged and
appear in the resulting dataset. There are severa types (INNER, OUTER) and classes (qualified,
natural, etc.) of joins, each with their own syntax and rules.

Since joins can be chained, the datasets involved in ajoin may themselves be joined sets.
Syntax.

SELECT

FROM <sour ce>
[<j oi ns>]

33

DML statements

[...]

<source> = {table
| view
| sel ectabl e-stored-procedure [(args)]
| derived-table
| common-t abl e- expressi on}
[[AS] alias]
<j oi ns> = <join> [<join> .. .]
<j oi n> ::= [<join-type>] JA N <source> <join-condition>

| NATURAL [<join-type>] JO N <source>

<j oi n-type> L=

| {CROSS JON |

,} <source>

| NNER |

{LEFT |

Rl GHT |

FULL} [OUTER]

<j oi n-condi ti on>

ON condition |

USI NG (col um-1i st)

Inner vs. outer joins

A join always combines data rows from two sets (usually referred to as the left set and the right set).
By default, only rows that meet the join condition (i.e., that match at least one row in the other set
when the join condition is applied) make it into the result set. This default type of join is called an
inner join. Suppose we have the following two tables:

Table A:
ID S
87 Just some text
235 Silence
Table B:
CODE X
-23 56.7735
87 416.0
If wejoin these tableslike this:
sel ect *
fromA
join B on Aid = B.code
then the result set will be:
ID S CODE X
87 Just some text 87 416.0

Thefirst row of A has been joined with the second row of B because together they met the condition
“A.id = B.code’. The other rows from the source tables have no match in the opposite set and are
therefore not included in the join. Remember, thisis an INNER join. We can make that fact explicit
by writing:

sel ect *
fromA

inner join Bon Aid = B.code

DML statements

However, since INNER is the default, thisisrarely done.

It is perfectly possible that a row in the left set matches several rows from the right set or vice versa.
In that case, al those combinations are included, and we can get results like:

ID S CODE X

87 Just some text 87 416.0
87 Just some text 87 -1.0

-23 Don't know -23 56.7735
-23 Still don't know -23 56.7735
-23 | giveup -23 56.7735

Sometimes we want (or need) all the rows of one or both of the sources to appear in the joined set,
regardless of whether they match a record in the other source. This is where outer joins comein. A
LEFT outer joinincludes all the records from the left set, but only matching records from the right set.
In aRIGHT outer join it's the other way around. FULL outer joins include all the records from both
sets. In all outer joins, the “holes” (the places where an included source record doesn't have a match
in the other set) are filled up with NULLSs.

In order to make an outer join, you must specify LEFT, RIGHT or FULL, optionally followed by the
keyword OUTER.

Below are the results of the various outer joins when applied to our original tables A and B:

sel ect *
fromA
left [outer] join B on A id = B.code

ID S CODE X
87 Just some text 87 416.0
235 Silence <null> <null>
sel ect *

fromA

right [outer] join Bon Aid = B.code

ID S CODE X
<null> <null> -23 56.7735
87 Just some text 87 416.0
sel ect *

fromA

full [outer] join B on A id = B.code

ID S CODE X
<null> <null> -23 56.7735
87 Just some text 87 416.0
235 Silence <null> <null>

Qualified joins

Qualified joins specify conditions for the combining of rows. This happens either explicitly in an ON
clause or implicitly in aUSING clause.

35

DML statements

Syntax.

<qual i fied-joi n> [<join-type>] JO N <source> <join-condition>

<j oi n-type> INNER | {LEFT | RIGHT | FULL} [OUTER]

<j oi n-condi ti on> ON condition | USING (colum-1ist)

Explicit-condition joins

Most qualified joins have an ON clause, with an explicit condition that can be any valid boolean
expression but usually involves some comparison between the two sources involved.

Quite often, the condition is an equality test (or a number of ANDed equality tests) using the “="
operator. Joins like these are called equi-joins. (The examples in the section on inner and outer joins
were al equi-joins.)

Examples of joins with an explicit condition:

/* Select all Detroit custoners who made a purchase
in 2013, along with the purchase details: */
select * fromcustoners c
join sales s on s.cust_id =c.id
where c.city = 'Detroit' and s.year = 2013

/* Sanme as above, but include non-buying custoners: */
select * fromcustoners ¢

left join sales s on s.cust _id =c.id

where c.city = 'Detroit' and s.year = 2013

/* For each man, select the wormen who are taller than he.
Men for whom no such wonan exists are not included. */
sel ect mfullname as man, f.fullname as woman
frommales m
join females f on f.height > m hei ght

/* Select all pupils with their class and nentor.
Pupils without a mentor are al so included.
Pupils without a class are not included. */

sel ect p.firstnane, p.niddl enane, p.l|astnane,

C. hame, m nane
frompupils p
join classes c on c.id = p.class
left join nentors mon mid = p.nentor

Named columns joins

Equi-joins often compare columns that have the same name in both tables. If this is the case, we
can also use the second type of qualified join: the named columns join. Named columns joins have a
USING clause which states just the column names. So instead of this:

select * fromflotsamf
join jetsam]
on f.sea = j.sea
and f.ship = j.ship
we can also write:

select * from fl otsam
join jetsamusing (sea, ship)

36

DML statements

which isconsiderably shorter. Theresult setisalittle different though — at least when using “ SELECT

*1.

» The explicit-condtion join —with the ON clause — will contain each of the columns SEA and SHIP
twice: once from table FLOTSAM, and once from table JETSAM. Obviously, they will have the
same values.

» The named columns join —with the USING clause — will contain these columns only once.
If you want al the columns in the result set of the named columnsjoin, set up your query like this:

select f.*, j.*
fromflotsamf
join jetsamj using (sea, ship)

Thiswill give you the exact same result set as the explicit-condition join.

For an OUTER named columns join, there's an additional twist when using “SELECT *” or an
unqualified column name from the USING list:

If arow from one source set doesn't have amatch in the other but must still be included because of the
LEFT, RIGHT or FULL directive, the merged column in thejoined set getsthenon-NULL value. That
isfair enough, but now you can't tell whether this value came from the left set, the right set, or both.
This can be especially deceiving when the value came from the right hand set, because “*” aways
shows combined columnsin the left hand part — even in the case of aRIGHT join.

Whether thisis aproblem or not depends on the situation. If it is, usethe“a.* , b.* " approach shown
above, with a and b the names or aliases of the two sources. Or better yet, avoid “* " altogether in
your serious queries and qualify all column namesin joined sets. This has the additional benefit that
it forces you to think about which data you want to retrieve and where from.

Itisyour responsibility to make sure that the column namesinthe USING list are of compatible types
between the two sources. If the types are compatible but not equal, the engine converts them to the
type with the broadest range of values before comparing the values. Thiswill aso be the data type of
the merged column that shows up in the result set if “SELECT *” or the unqualified column nameis
used. Qualified columns on the other hand will always retain their original datatype.

Natural joins

Taking the idea of the named columns join a step further, anatural join performs an automatic equi-
join on al the columns that have the same name in the left and right table. The data types of these
columns must be compatible.

Syntax.

<natural-join> ::= NATURAL [<join-type>] JO N <source>
<j oi n-type> 2= INNER | {LEFT | RIGHT | FULL} [QUTER
Given these two tables:

create table TA (
a bigint,
s varchar(12),
i ns_date date

)

create table TB (
a bigint,
descr varchar (12),

37

DML statements

x fl oat,
i ns_date date

)

anatural join on TA and TB would involve the columns a and i ns_dat e, and the following two
statements would have the same effect:

select * fromTA
natural join TB

select * fromTA
join TB using (a, ins_date)

Like al joins, natural joins are inner joins by default, but you can turn them into outer joins by
specifying LEFT, RIGHT or FULL before the JOIN keyword.

Caution: if there are no columns with the same name in the two source relations, a CROSS JOIN is
performed. Well get to this type of join in aminute.

A note on equality

The“=" operator, which is explicitly used in many conditiona joins and implicitly in named column
joins and natura joins, only matches values to values. According to the SQL standard, NULL is not
avaue and hence two NULLSs are neither equal nor unegual to one another. If you need NULLs to
match each other in ajoin, use the ISNOT DISTINCT FROM operator. This operator returns true if
the operands have the same value or if they are both NULL.

sel ect *
fromA join B
on Alid is not distinct from B. code

Likewise, in the — extremely rare — cases where you want to join on inequality, use IS DISTINCT
FROM, not “<>", if you want NULL to be considered different from any value and two NULLs
considered equal:

sel ect *
fromA join B
on A.id is distinct from B. code

This note about equality and inequality operators applies everywhere in Firebird SQL, not only in
join conditions.

Cross joins

A cross join produces the full set product of the two data sources. This means that it successfully
matches every row in the left source to every row in the right source.

Syntax.
<cross-join> ::= {CROSS JON | ,} <source>

Please notice that the comma syntax is deprecated! It is only supported to keep legacy code working
and may disappear in some future version.

Cross-joining two sets is equivalent to joining them on a tautology (a condition that is always true).
The following two statements have the same effect:

select * fromTA
cross join TB

select * fromTA

38

DML statements

join TBon 1 =1

Crossjoins areinner joins, because they only include matching records—it just so happens that every
record matches! An outer cross join, if it existed, wouldn't add anything to the result, because what
outer joins add are non-matching records, and these don't exist in cross joins.

Crossjoins are seldom useful, except if you want to list all the possible combinations of two or more
variables. Supposeyou are selling aproduct that comesin different sizes, different colorsand different
materials. If these variables are each listed in a table of their own, this query would return al the
combinations:

sel ect mnane, s.size, c.nane
frommterials m
Cross join sizes s
cross join colors ¢

Ambiguous field names in joins

Firebird rejects unqualified field namesin a query if these field names exist in more than one dataset
involvedin ajoin. Thisiseven truefor inner equi-joins where the field name figuresin the ON clause
likethis:

select a, b, ¢
from TA
join TB on TA.a = TB.a

There is one exception to this rule: with named columns joins and natural joins, the unqualified field
name of a column taking part in the matching process may be used legally and refers to the merged
column of the same name. For named columnsjoins, these are the columnslisted inthe USING clause.
For natural joins, they are the columns that have the same name in both relations. But please notice
again that, especialy in outer joins, plain col nane isn't always the same as | ef t .col nane or
ri ght .col name. Types may differ, and one of the qualified columns may be NULL while the other
isn't. Inthat case, the valuein the merged, unqualified column may mask the fact that one of the source
valuesis absent.

The WHERE clause

The WHERE clause serves to limit the rows returned to the ones that the caler is interested in. The
condition following the keyword WHERE can be assimpleasacheck like* AMOUNT =3" or it canbe
amultilayered, convoluted expression containing subselects, predicates, function calls, mathematical
and logical operators, context variables and more.

The condition in the WHERE clause is often called the search condition, the search expression or
simply the search.

In DSQL and ESQL, the search expression may contain parameters. Thisis useful if aquery hasto be
repeated a number of times with different input values. In the SQL string asit is passed to the server,
guestion marks are used as placeholders for the parameters. They are called positional parameters
because they can only betold apart by their position in the string. Connectivity libraries often support
named parametersof theform: i d,: amount , : a etc. Theseare more user-friendly; thelibrary takes
care of trandating the named parameters to positional parameters before passing the statement to the
server.

The search condition may also contain local (PSQL) or host (ESQL) variable names, preceded by a
colon.

Syntax.

SELECT ...
FROM . ..

39

DML statements

[...]

VWHERE <sear ch-condi ti on>

[...]

<search-condition> ::= a bool ean expression returning
TRUE, FALSE or possibly UNKNOAN (NULL)

Only those rows for which the search condition evaluates to TRUE are included in the result set. Be
careful with possible NULL outcomes: if you negate a NULL expression with NOT, the result will still
be NULL and the row will not pass. Thisis demonstrated in one of the examples below.

Examples

sel ect genus, species from nammual s
where famly = 'Felidae'
order by genus

sel ect * from persons
where birthyear in (1880, 1881)
or birthyear between 1891 and 1898

sel ect nane, street, borough, phone
from schools s
where exists (select * frompupils p where p.school = s.id)
order by borough, street

sel ect * from enpl oyees
where salary >= 10000 and position <> 'Manager'

sel ect nane fromwestlers

where regi on = ' Europe'
and weight > all (select weight fromshot putters
where region = 'Africa')

select id, name from players
where teamid = (select id fromteans where name = 'Buffal oes')

sel ect sum (popul ation) fromtowns
where nane |ike '%lam
and province containing 'land

sel ect password fromusertable
wher e usernanme = current_user

The following example shows what can happen if the search condition evaluatesto NULL.

Suppose you have atable listing some children’'s names and the number of marbles they possess. At
a certain moment, the table contains these data:

CHILD MARBLES
Anita 23

Bob E. 12

Chris <null>
Deirdre 1

Eve 17

Fritz 0

Gerry 21

40

DML statements

CHILD MARBLES
Hadassah <null>
|saac 6

First, please notice the difference between NULL and O: Fritzisknown to have no marblesat al, Chris's
and Hadassah's marble counts are unknown.

Now, if you issue this SQL statement:

select list(child) from marbl etable where marbles > 10
you will get the names Anita, Bob E., Eve and Gerry. These children al have more than 10 marbles.
If you negate the expression:

select list(child) from marbl etable where not marbles > 10

it's the turn of Deirdre, Fritz and Isaac to fill the list. Chris and Hadassah are not included, because
they aren't known to have ten marbles or less. Should you change that last query to:

select list(child) frommarbl etabl e where marbles <= 10

theresult will till be the same, because the expression NULL <= 10 yields UNKNOWN. Thisis not the
same as TRUE, so Chris and Hadassah are not listed. If you want them listed with the “poor” children,
change the query to:

select list(child) from marbl etable where marbles <= 10 or marbles is null

Now the search condition becomes true for Chris and Hadassah, because “marbl es is nul |”
obviously returns TRUE in their case. In fact, the search condition cannot be NULL for anybody now.

Lastly, two examples of SELECT queries with parametersin the search. It depends on the application
how you should define query parameters and even if it ispossible at all. Notice that querieslike these
cannot be executed immediately: they have to be prepared first. Once a parameterized query has been
prepared, the user (or calling code) can supply values for the parameters and have it executed many
times, entering new values before every call. How the values are entered and the execution started is
up to the application. In a GUI environment, the user typically types the parameter values in one or
more text boxes and then clicks an “Execute”, “Run” or “Refresh” button.

sel ect nane, address, phone frome stores
where city = ? and class = ?

select * from pants
where npdel = :nodel and size = :size and color = :col

The last query cannot be passed directly to the engine; the application must convert it to the other
format first, mapping named parameters to positional parameters.

The GROUP BY clause

GROUP BY merges output rows that have the same combination of valuesinitsitemlist into asingle
row. Aggregate functions in the select list are applied to each group individually instead of to the
dataset asawhole.

If the select list only contains aggregate columns — or, more generally, columns whose values don't
depend on individua rows in the underlying set — GROUP BY is optional. When omitted, the final
result set of will consist of asingle row (provided that at least one aggregated column is present).

If the select list contains both aggregate columns and columns whose values may vary per row, the
GROUPBY clause becomes mandatory.

41

DML statements

Syntax.
SELECT ... FROM...
GROUP BY <grouping-itens [, <grouping-itent ...]
[HAVI NG <gr ouped-r ow condi ti on>]
<groupi ng-itenp .= <non-aggr-select-itenp

| <non-aggr-expressi on>

<non- aggr-select-itenpr col um- copy
| colum-alias

| col um-position

<non- aggr - expr essi on> any non-aggregate expression that is not
in the select list, e.g. unsel ected col ums
fromthe source set or expressions that

don't depend on the data in the set at all

A genera rule of thumb is that every non-aggregate item in the SELECT list must also be in the
GROUP BY list. You can do thisin three ways:

1. By copying the item verbatim from the select list, eg. “class” or “' D' ||
upper (doccode) .

2. By specifying the column alias, if it exists.

3. By specifying the column position as an integer literal between 1 and the number of columns.
Integer values resulting from expressions or parameter substitutions are simply invariables and will
be used as such in the grouping. They will have no effect though, as their value is the same for
each row.

Please notice: If you group by a column position, the expression at that position is copied internally
from the select list. If it concerns a subquery, that subquery will be executed at |east twice.

In addition to the required items, the grouping list may also contain:

» Columns from the source table that are not in the select list, or non-aggregate expressions based on
such columns. Adding such columns may further subdivide the groups. But since these columns are
not in the select list, you can't tell which aggregated row corresponds to which value in the column.
So, in generdl, if you are interested in this information, you also include the column or expression
in the select list —which brings you back to the standard “ every non-aggregate column in the select
list must also be in the grouping list” mantra.

» Expressionsthat aren't dependent on the datain the underlying set, e.g. constants, context variables,
single-value non-correlated subsel ects etc. Thisis only mentioned for completeness, as adding such
items is utterly pointless: they don't affect the grouping at al. “Harmless but useless’ items like
these may also figure in the select list without being copied to the grouping list.

Examples
When the select list only contains aggregate columns, GROUP BY is not mandatory:

sel ect count(*), avg(age) from students
where sex = 'M

This will return a single row listing the number of male students and their average age. Adding
expressions that don't depend on valuesin individual rows of table STUDENTS doesn't change that:

sel ect count(*), avg(age), current_date from students

42

DML statements

where sex = 'M

The row will now have an extra column showing the current date, but other than that, nothing
fundamental has changed. A GROUP BY clauseis still not required.

However, in both the above examplesit is allowed. Thisis perfectly valid:

sel ect count(*), avg(age) from students
where sex = 'M
group by cl ass

and will return arow for each class that has boys in it, listing the number of boys and their average
ageinthat particular class. (If you alsoleavethecur r ent _dat e field in, thisvalue will be repeated
on every row, which is not very exciting.)

The above query has a major drawback though: it gives you information about the different classes,
but it doesn't tell you which row applies to which class. In order to get that extra bit of information,
the non-aggregate column CLASS must be added to the select list:

sel ect class, count(*), avg(age) from students
where sex = 'M
group by cl ass

Now we have a useful query. Notice that the addition of column CLASS also makes the GROUP
BY clause mandatory. We can't drop that clause anymore, unless we also remove CLASS from the
column list.

The output of our last query may look something like this:

CLASS COUNT AVG
2A 12 135
2B 9 13.9
3A 11 14.6
3B 12 144

Theheadings“ COUNT” and“AVG” arenot very informative. In asimple caselikethis, you might get
away with that, but in general you should give aggregate columns ameaningful name by aliasing them:

sel ect cl ass,
count (*) as num boys,
avg(age) as boys avg_age
from students
where sex = 'M
group by cl ass

Asyou may recall from the formal syntax of the columnslist, the AS keyword is optional.

Adding more non-aggregate (or rather: row-dependent) columns requires adding them to the GROUP
BY clause too. For instance, you might want to see the above information for girls as well; and you
may also want to differentiate between boarding and day students:

sel ect cl ass,
sex,
boar di ng_t ype,
count (*) as numnber,
avg(age) as avg_age
from students

43

DML statements

group by class, sex, boarding_type

This may give you the following result:

CLASS SEX BOARDING_TNMBKE BER AVG_AGE
2A F BOARDING |9 133
2A F DAY 6 135
2A M BOARDING |7 13.6
2A M DAY 5 134
2B F BOARDING |11 13.7
2B F DAY 5 13.7
2B M BOARDING |6 13.8

Each row in the result set corresponds to one particular combination of the variables class, sex and
boarding type. The aggregate results — number and average age — are given for each of these rather
specific groups individually. In a query like this, you don't see a total for boys as a whole, or day
students as awhole. That's the tradeoff: the more non-aggregate columns you add, the more you can
pinpoint very specific groups, but the more you also lose sight of the general picture. Of course you
can till obtain the “coarser” aggregates through separate queries.

HAVING

Just as a WHERE clause limits the rows in a dataset to those that meet the search condition, so
the HAVING subclause imposes restrictions on the aggregated rows in a grouped set. HAVING is
optional, and can only be used in conjunction with GROUP BY .

The condition(s) in the HAVING clause can refer to:
» Any aggregated column in the select list. Thisisthe most widely used alternative.

» Any aggregated expression that is not in the select list, but allowed in the context of the query. This
is sometimes useful too.

* Any columninthe GROUPBY list. Whilelegal, it ismoreefficient to filter on these non-aggregated
dataat an earlier stage: in the WHERE clause.

» Any expression whose value doesn't depend on the contents of the dataset (like a constant or a
context variable). Thisisvalid but utterly pointless, because it will either suppress the entire set or
leave it untouched, based on conditions that have nothing to do with the set itself.

A HAVING clause can not contain:
» Non-aggregated column expressions that are not in the GROUP BY list.
» Column positions. An integer in the HAVING clauseisjust an integer.
» Column aliases— not even if they appear in the GROUP BY clause!
Examples
Building on our earlier examples, this could be used to skip small groups of students:

sel ect cl ass,
count (*) as num boys,
avg(age) as boys_avg_age
from students

DML statements

where sex = 'M
group by cl ass
havi ng count(*) >= 5

To select only groups that have a minimum age spread:

sel ect cl ass,
count (*) as num boys,
avg(age) as boys_avg_age
from students
where sex = 'M
group by cl ass
havi ng max(age) - nin(age) > 1.2

Notice that if you're redly interested in this information, you'd normally include m n(age) and
max(age) —ortheexpression “nmax(age) - m n(age)” —inthe select list aswell!

To include only 3rd classes:

sel ect cl ass,
count (*) as num boys,
avg(age) as boys_avg_age
from students
where sex = 'M
group by cl ass
having class starting with '3

Better would be to move this condition to the WHERE clause:

sel ect cl ass,
count (*) as num boys,
avg(age) as boys_avg_age
from students
where sex = 'M and class starting with '3
group by cl ass

The PLAN clause

The PLAN clause enables the user to submit a data retrieval plan, thus overriding the plan that the
optimizer would have generated automatically.

Syntax
PLAN <pl an- expr >

<pl an- expr > ::= (<plan-itemr [, <plan-itenm> ...])
| <sorted-itenp
| <joined-itenp
| <merged-itenp

<sorted-itemr ::= SORT (<plan-itenvp)

<joined-item» ::= JON (<plan-itenr, <plan-item» [, <plan-itenm> ...])
<nerged-item> ::= [SORT] MERGE (<sorted-itenp, <sorted-iten» [, <sorted
<pl an-itene ;1= <basic-itenm> | <plan-expr>

<basic-itenp ::= <relation>

45

DML statements

{ NATURAL
| I'NDEX (<indexlist>)
| ORDER index [INDEX (<indexlist>)]}

tabl e
| view [table]

<rel ati on>

<i ndexl i st > i ndex [, index ...]

table, view ::= nane or alias

Every time a user submits a query to the Firebird engine, the optimizer computes a data retrieval
strategy. Most Firebird clients can make this retrieval plan visible to the user. In Firebird's own isql
utility, this is done with the command SET PLAN ON. If you are studying query plans rather than
running queries, SET PLANONLY ON will show the plan without executing the query.

In most situations, you can trust that Firebird will select the optimal query plan for you. However, if
you have complicated queries that seem to be underperforming, it may very well be worth your while
to examine the plan and see if you can improve on it.

Simple plans

The simplest plans consist of just arelation namefollowed by aretrieval method. E.g., for an unsorted
single-table select without a WHERE clause:

sel ect * from students
pl an (students natural)

If there'sa WHERE or aHAVING clause, you can specify the index to be used for finding matches:

select * from students
where class = '3C
pl an (students index (ix_stud_class))

The INDEX directive is also used for join conditions (to be discussed alittle later). It can contain a
list of indexes, separated by commas.

ORDER specifies the index for sorting the set if an ORDER BY or GROUP BY clauseis present:

sel ect * from students
pl an (students order pk_students)
order by id

ORDER and INDEX can be combined:

select * from students
where class >= '3
pl an (students order pk_students index (ix_stud_class))
order by id

Itis perfectly OK if ORDER and INDEX specify the same index:

sel ect * from students
where class >= '3’
pl an (students order ix_stud_class index (ix_stud_class))
order by cl ass

For sorting sets when there's no usable index available (or if you want to suppress its use), leave out
ORDER and prepend the plan expression with SORT:

select * from students

46

DML statements

pl an sort (students natural)
order by name

Or when an index is used for the search:

sel ect * from students
where class >= '3’
plan sort (students index (ix_stud class))
order by nane

Notice that SORT, unlike ORDER, is outside the parentheses. This reflects the fact that the data rows
are retrieved unordered and sorted afterwards by the engine.

When selecting from aview, specify the view and the table involved. For instance, if you have aview
FRESHMEN that selectsjust the first-year students:

select * from freshnen
pl an (freshnen students natural)

Or, for instance:

select * from freshnen
where id > 10
plan sort (freshmen students index (pk_students))
order by nane desc

Please notice: if you have aliased atable or view, you must use the alias name, not the original name,
inthe PLAN clause.

Composite plans

When ajoin is made, you can specify the index which is to be used for matching. Y ou must also use
the JOIN directive on the two streams in the plan:

select s.id, s.name, s.class, c.nentor
fromstudents s
join classes ¢ on c.nane = s.class
plan join (s natural, c index (pk_classes))

The same join, sorted on an indexed column:

select s.id, s.nanme, s.class, c.nentor
fromstudents s
join classes ¢ on c.nane = s.class
plan join (s order pk_students, c index (pk_classes))
order by s.id

And on a non-indexed column:

select s.id, s.nane, s.class, c.nmentor
fromstudents s
join classes ¢ on c.nane = s.class
plan sort (join (s natural, c index (pk_classes)))
order by s.namne

With a search added:

select s.id, s.nanme, s.class, c.nmentor
fromstudents s
join classes ¢ on c.nane = s.class
where s.class <= '2'

47

DML statements

plan sort (join (s index (fk_student_class), c index (pk_classes)))
order by s.name

Asaleft outer join:

select s.id, s.name, s.class, c.nentor
fromclasses ¢
left join students s on c.nane = s.class
where s.class <= '2'
plan sort (join (c natural, s index (fk_student _class)))
order by s.nane

If there is no index available to match the join criteria (or if you don't want to use it), the plan must
first sort both streams on their join column(s) and then merge them. This is achieved with the SORT
directive (which we've already met) and MERGE instead of JOIN:

select * fromstudents s
join classes ¢ on c.cookie = s.cookie
pl an nerge (sort (c natural), sort (s natural))

Adding an ORDER BY clause means the result of the merge must also be sorted:

select * from students s
join classes ¢ on c.cookie = s.cookie
plan sort (nmerge (sort (c natural), sort (s natural)))
order by c.nane, s.id

Finally, we add a search condition on two indexable colums of table STUDENTS:

select * from students s
join classes ¢ on c.cookie = s.cookie
where s.id < 10 and s.class <= '2'
plan sort (merge (sort (c natural),
sort (s index (pk_students, fk_student _class))))
order by c.nanme, s.id

As follows from the formal syntax definition, JOINs and MERGES in the plan may combine more
than two streams. Also, every plan expression may be used as a plan item in an encompassing plan.
This means that plans of certain complicated queries may have various nesting levels.

Finally, instead of MERGE you may al sowrite SORT MERGE. Asthismakesabsolutely no difference
and may create confusion with “real” SORT directives (the ones that do make a difference), it's
probably best to stick to plain MERGE.

UNION

A UNION concatenates two or more datasets, thus increasing the number of rows but not the number
of columns. Datasets taking part in a UNION must have the same number of columns, and columns
at corresponding positions must be of the same type. Other than that, they may be totally unrelated.

By default, aunion suppresses duplicate rows. UNION ALL showsall rows, including any duplicates.
The optional DISTINCT keyword makes the default behaviour explicit.

Syntax.

<uni on> ;.= <individual -sel ect>
UNION [DI STINCT | ALL]
<i ndi vi dual - sel ect >
[UNION [DI STI NCT | ALL]
<i ndi vi dual - sel ect >

48

DML statements

]

[<uni on-wi de- cl auses>]

<i ndi vi dual - sel ect > ::= SELECT
[TRANSACTI ON nane]
[FIRST <np] [SKIP <n>]
[DI STINCT | ALL] <col ums>
[NTO <host -varli st >]
FROM source [[AS] alias]
[<j oi ns>]
[WHERE <condi ti on>]
[GROUP BY <grouping-1list>
[HAVI NG <aggr egat e-condi ti on>]]
[PLAN <pl an- expr >]

<uni on-w de-cl auses> ::= [ORDER BY <ordering-I|ist>]
[ROAM5S m[TO n]]
[FOR UPDATE [OF <col ums>]]

[WTH LOCK]
[NTO <PSQL-varli st >]

Unions take their column names from the first select query. If you want to alias union columns, do so
in the column list of the topmost SELECT. Aliases in other participating selects are allowed and may
even be useful, but will not propagate to the union level.

If aunion hasan ORDER BY clause, the only allowed sort items areinteger literalsindicating 1-based
column positions, optionally followed by an ASC/DESC and/or a NULLS FIRST/LAST directive.
Thisaso impliesthat you cannot order a union by anything that isn't a column in the union. (Y ou can,
however, wrap it in a derived table, which gives you back all the usual sort options.)

Unions are allowed in subqueries of any kind and can themselves contain subqueries. They can also
contain joins, and can take part in ajoin when wrapped in aderived table.

Examples
This query presents information from different music collections in one dataset using unions:

select id, title, artist, length, 'CD as nedium
from cds

uni on

select id, title, artist, length, 'LP
fromrecords

uni on

select id, title, artist, length, 'MC
from cassettes

order by 3, 2 -- artist, title

Ifid,title,artist andl engt h are the only fields in the tables involved, the query can also
be written as:

select c.*, 'CD as nedium
fromcds c

uni on

select r.*, 'LP
fromrecords r

uni on

select c.*, 'MC
fromcassettes ¢

order by 3, 2 -- artist, title

49

DML statements

Qualifying the “stars” is necessary here because they aren't the only item in the column list. Notice
how the “c¢” aliasesin the first and third select don't bite each other; they don't have union scope, but
only apply to their individual select query.

The next query retrieves names and phone numbers from tranglators and proofreaders. Translators
who also work as proofreaderswill show up only oncein theresult set, provided their phone number is
the same in both tables. The same result can be obtained without DISTINCT. With ALL, these people
would appear twice.

sel ect nane, phone fromtranslators
uni on di stinct
sel ect nane, tel ephone from proofreaders

A UNION within a subquery:

sel ect nane, phone, hourly_rate from cl owns
where hourly_rate < all
(select hourly_rate fromjugglers
uni on
sel ect hourly rate from acrobats)
order by hourly rate

MATERIAL COPIED FROM THE LRU

The sections contained herein have been copied from the Firebird 2.5 LRU (Language Reference
Update). Some of them can be deleted, others extended to become Language Reference sections, yet
others contain material that should be merged with the LR sections above.

FROM LRU: Aggregate functions: Extended functionality
Changedin. 15
Description. Several types of mixing and nesting aggregate functions are supported since Firebird
1.5. They will be discussed in the following subsections. To get the complete picture, also look at the
SELECT :: GROUPBY sections.

Mixing aggregate functions from different contexts

Firebird 1.5 and up alow the use of aggregate functions from different contexts inside a single

expression.
Example.
sel ect
r.rdb$rel ati on_name as "Tabl e nane",
(select max(i.rdb$statistics) || ' (" || count(*) || ")’

fromrdb$relation_fields rf
where rf.rdb$rel ati on_name = r.rdb$rel ati on_nane
) as "Max. IndexSel (# fields)"
from
rdb$rel ations r

join rdb$indices i on (i.rdb$relation_nane = r.rdb$rel ati on_nane)

group by r.rdb$rel ati on_nane
havi ng max(i.rdb$statistics) > 0
order by 2

This admittedly rather contrived query shows, in the second column, the maximum index selectivity
of any index defined on atable, followed by the table'sfield count between parentheses. Of courseyou
would normally display the field count in a separate column, or in the column with the table name,

50

DML statements

but the purpose here is to demonstrate that you can combine aggregates from different contextsin a
single expression.

@ Warning
Firebird 1.0 also executes thistype of query, but gives the wrong results!

Aggregate functions and GROUP BY items inside subqueries

SinceFirebird 1.5it is possible to use aggregate functions and/or expressions contained in the GROUP
BY clauseinside a subquery.

Examples.

This query returns each table's ID and field count. The subquery refers to
fl ds. rdb$rel ati on_nane, whichisalso aGROUPBY item:

sel ect
flds.rdb$rel ati on_nanme as "Rel ati on nane",
(select rels.rdb$relation_id
fromrdb$rel ations rels
where rel s.rdb$rel ati on_name = flds.rdb$rel ati on_nane
) as "ID",
count(*) as "Fields"
fromrdb$relation_fields flds
group by flds.rdb$rel ati on_nane

The next query shows the last field from each table and its 1-based position. It uses
the aggregate function MAX in asubquery.

sel ect
flds.rdb$rel ati on_nanme as "Tabl e",
(select flds2.rdb$field _nane
fromrdb$relation_fields flds2
wher e
flds2.rdb$rel ati on_name = flds.rdb$rel ati on_nane
and flds2.rdb$field_position = nmax(flds.rdb$fiel d_position)
) as "Last field",
max(fl ds.rdb$field_position) + 1 as "Last fiel dpos"
fromrdb$relation_fields flds
group by 1

The subquery aso containsthe GROUPBY itemf | ds. r db$r el at i on_nane,
but that's not immediately obvious because in this case the GROUP BY clause uses
the column number.

Subqueries inside aggregate functions

Using asingleton subselect inside (or as) an aggregate function argument is supported in Firebird 1.5
and up.

Example.

sel ect
r.rdb$rel ati on_name as "Tabl e",
sum (sel ect count(*)
fromrdb$relation_fields rf
where rf.rdb$rel ation_name = r.rdb$rel ati on_nane)
) as "Ind. x Fields"

51

DML statements

from
rdb$rel ations r
j oi n rdb$i ndi ces
on (i.rdb$rel ation_nane = r.rdb$rel ati on_nane)
group by
r.rdb$rel ati on_nane

Nesting aggregate function calls

Firebird 1.5 allowstheindirect nesting of aggregate functions, provided that theinner functionisfrom
alower SQL context. Direct nesting of aggregate function calls, asin “COUNT(MAX(price))", is
still forbidden and punishable by exception.

Example. See under Subqueries inside aggregate functions, where COUNTY() is used inside a
SUMY().

Aggregate statements: Stricter HAVING and ORDER BY

Firebird 1.5 and above are stricter than previous versions about what can be included in the HAVING
and ORDER BY clauses. If, in the context of an aggregate statement, an operand in a HAVING or
ORDER BY item contains a column name, it is only accepted if one of the following is true:

» The column name appears in an aggregate function call (eg. “HAVI NG MAX(SALARY) >
100007).

» The operand equals or is based upon a non-aggregate column that appears in the GROUP BY list
(by name or position).

“Is based upon” means that the operand need not be exactly the same as the column name. Suppose
there's a non-aggregate column “STR” in the select list. Then it's OK to use expressions like
“UPPER(STR)”, “STR || """ or “SUBSTRING(STR FROM 4 FOR 2)" in the HAVING clause—even
if these expressions don't appear as such in the SELECT or GROUP BY list.

FROM LRU: [AS] before relation alias
Addedin. IB
Description. The keyword AS can optionally be placed before a relation alias, just as it can be

placed before a column alias. This feature dates back to InterBase times, but wasn't documented in
the IB Language Reference.

Syntax.

SELECT ... FROM <rel ation> [AS] alias

<relation> ::= Atable, view, or selectable SP
Examples.

sel ect order_no, total, fullnane
fromorders as o join custoners as ¢ on o.cust_id = c.cust_id

sel ect order_no, total, fullnane
fromorders o join custoners ¢ on o.cust_id = c.cust _id

The two queries are fully equivalent.

FROM LRU: COLLATE subclause for text BLOB columns

Addedin. 20

52

DML statements

Description. COLLATE subclauses are now also supported for text BLOBSs.
Example.

sel ect NaneBl ob from MyTabl e
where NaneBlob collate pt_br = 'Joéao'

FROM LRU: Common Table Expressions (“WITH ... AS ...
SELECT”)
Availablein. DSQL, PSQL

A common table expression or CTE can be described as a virtual table or view, defined in apreamble
toamain query, and going out of scope after the main query's execution. The main query can reference
any CTEs defined in the preamble as if they were regular tables or views. CTESs can berecursive, i.e.
self-referencing, but they cannot be nested.

Syntax.

<cte-construct>

<ct e-defs>
<mai n- query>

<ct e-def s> ::= WTH [RECURSI VE] <cte> [, <cte> ...]
<ct e> ;.= name [(<colum-list>)] AS (<cte-stnt>)
<colum-1ist> = colum-alias [, colum-alias ...]
<cte-stnt> ;.= any SELECT statenent or UN ON

the mai n SELECT statenent, which can refer to the
CTEs defined in the preanble

<mai n- query>

Example.

wi th dept _year budget as (
sel ect fiscal _year,
dept _no,
sum(proj ect ed_budget) as budget
from proj dept budget
group by fiscal _year, dept_no

sel ect d.dept_no,
d. depart nment,
dyb_2008. budget as budget 08,
dyb_2009. budget as budget 09
from departnent d
left join dept year budget dyb 2008
on d.dept_no = dyb_2008. dept _no
and dyb_2008. fiscal _year = 2008
left join dept year budget dyb 2009
on d.dept_no = dyb_2009. dept _no
and dyb_2009. fiscal _year = 2009
where exists (
sel ect * from proj _dept budget b
where d. dept _no = b.dept_no
)

Notes.

53

DML statements

» A CTE definition can contain any legal SELECT statement, aslong asit doesn't have a“WITH...”
preamble of its own (no nesting).

» CTEs defined for the same main query can reference each other, but care should be taken to avoid
loops.

» CTEs can be referenced from anywhere in the main query.
» Each CTE can be referenced multiple times in the main query, possibly with different aliases.

» When enclosed in parentheses, CTE constructs can be used as subqueries in SELECT statements,
but also in UPDATESs, MERGES etc.

» InPSQL, CTEs are also supported in FOR loop headers:

for with my rivers as (select * fromrivers where ower = 'ne')
sel ect nane, length fromny rivers into :rname, :rlen

do

begin

end

Recursive CTEs

A recursive (self-referencing) CTE isa UNION which must have at least one non-recursive member,
called the anchor. The non-recursive member(s) must be placed before the recursive member(s).
Recursive members are linked to each other and to their non-recursive neighbour by UNION ALL
operators. The unions between non-recursive members may be of any type.

Recursive CTEs require the RECURSIVE keyword to be present right after WITH. Each recursive
union member may reference itself only once, and it must do so in a FROM clause.

A great benefit of recursive CTEsisthat they use far less memory and CPU cycles than an equivalent
recursive stored procedure.

The execution pattern of arecursive CTE isasfollows:
 The engine begins execution from a non-recursive member.

» For each row evaluated, it starts executing each recursive member one by one, using the current
values from the outer row as parameters.

* If the currently executing instance of arecursive member produces no rows, execution loops back
one level and gets the next row from the outer result set.

Examplewith arecursive CTE.

wi th recursive
dept _year budget as (
sel ect fiscal _year,
dept _no,
sum(proj ect ed_budget) as budget
from proj _dept_budget
group by fiscal _year, dept_no
),
dept _tree as (
sel ect dept _no,
head_dept,
depart ment,
cast('' as varchar(255)) as indent

54

DML statements

from depart nent
where head_dept is null

uni on al |

sel ect d.dept_no,
d. head_dept,
d. depart nent,
h.indent ||

from department d
join dept_tree h on d. head_dept = h.dept_no
)
sel ect d.dept_no,
d.indent || d.departnent as departnent,
dyb_2008. budget as budget _08,
dyb_2009. budget as budget 09
fromdept _tree d
left join dept_year budget dyb 2008
on d.dept_no = dyb_2008. dept _no
and dyb_2008.fiscal _year = 2008
left join dept_year budget dyb 2009
on d.dept_no = dyb_2009. dept _no
and dyb_2009.fiscal _year = 2009

Noteson recursive CTES.

» Aggregates (DISTINCT, GROUP BY, HAVING) and aggregate functions (SUM, COUNT, MAX
etc) are not alowed in recursive union members.

A recursive reference cannot participate in an outer join.

* The maximum recursion depth is 1024.

FROM LRU: Derived tables (“SELECT FROM SELECT")

A derived tableistheresult set of a SELECT query, used in an outer SELECT asif it were an ordinary
table. Put another way, it is a subquery in the FROM clause.

Syntax.

(sel ect - query)
[[AS] derived-table-alias]
[(<derived-col um-aliases>)]

<derived-colum-aliases> ::= colum-alias [, colum-alias ...
Examples.

The derived table in the query below (shown in boldface) contains al the relation
names in the database followed by their field count. The outer SELECT produces,
for each existing field count, the number of relations having that field count.

sel ect fieldcount,
count(relation) as numtabl es
from (select r.rdb$relation_name as relation
count (*) as fieldcount
from rdb$relations r
join rdb$relation_fields rf
on rf.rdb$relation_nanme = r.rdb$rel ati on_nane
group by rel ation)
group by fi el dcount

55

DML statements

A trivial example demonstrating the use of a derived table alias and column aliases
list (both are optional):

sel ect dbinfo. descr,
dbi nf o. def _char set
from (select * fromrdb$database) dbinfo
(descr, rel _id, sec_class, def_charset)

Notes.

* Derived tables can be nested.

 Derived tables can be unions and can be used in unions. They can contain aggregate functions,
subselects and joins, and can themselves be used in aggregate functions, subselects and joins. They
can also be or contain queries on selectable stored procedures. They can have WHERE, ORDER
BY and GROUP BY clauses, FIRST, SKIP or ROWS directives, etc. etc.

e Every column in a derived table must have a name. If it doesn't have one by nature (e.g. because
it's a constant) it must either be given an alias in the usual way, or a column aliases list must be
added to the derived table specification.

» The column diases|list is optional, but if it isused it must be complete. That is: it must contain an
aiasfor every column in the derived table.

» Theoptimizer can handle a derived table very efficiently. However, if the derived tableisinvolved
in an inner join and contains a subquery, then no join order can be made.

FROM LRU: FIRST and SKIP
Availablein. DSQL, PSQL
Addedin. 1.0
Changedin. 15
Better alternative. ROWS

Description. FIRST limits the output of a query to the first so-many rows. SKIP will suppress the
given number of rows before starting to return output.

ﬁ Tip
In Firebird 2.0 and up, use the SQL -compliant ROWS syntax instead.
Syntax.

SELECT [FIRST (<int-expr>)] [SKIP (<int-expr>)] <colums> FROM ...

<i nt - expr>
<col ums>

Any expression evaluating to an integer.
The usual output col um specifications.

@ Note
If <i nt - expr > isaninteger literal or a query parameter, the“()”

may be omitted. Subselects on the other hand require an extra pair of
parentheses.

FIRST and SKIP are both optional. When used together asin “FIRST mSKIP n”, the n topmost rows
of the output set are discarded and the first mrows of the remainder are returned.

56

DML statements

SKIP 0 isallowed, but of course rather pointless. FIRST 0 isalowed in version 1.5 and up, where it
returns an empty set. In 1.0.x, FIRST 0 causes an error. Negative SKIP and/or FIRST values always
result in an error.

If aSKIPlands past the end of the dataset, an empty set isreturned. If the number of rowsin the dataset
(or the remainder after a SKIP) isless than the value given after FIRST, that smaller number of rows
isreturned. These are valid results, not error situations.

Examples.
The following query will return the first 10 names from the People table:

select first 10 id, nanme from Peopl e
order by nane asc

The following query will return everything but the first 10 names:

sel ect skip 10 id, nane from People
order by nanme asc

And this one returns the last 10 rows. Notice the double parentheses:
sel ect skip ((select count(*) - 10 from People))
id, name from Peopl e
order by nanme asc

This query returns rows 81-100 of the People table:

select first 20 skip 80 id, nanme from Peopl e
order by nanme asc

: Two Gotchaswith FIRST in subselects
* This
delete from MyTabl e where IDin (select first 10 I D from MyTabl

will delete al of the rows in the table. Ouch! The sub-select is evaluating each 10
candidate rows for deletion, deleting them, dlipping forward 10 more... ad infinitum,
until there are no rows left. Beware! Or better: use the ROWS syntax, available since
Firebird 2.0.

* Querieslike:
...where F1 in (select first 5 F2 from Tabl e2 order by 1 desc)

won't work as expected, because the optimization performed by the engine transforms
the IN predicate to the correlated EXISTS predicate shown below. It's obviousthat in
this case FIRST N doesn't make any sense:

...where exists
(select first 5 F2 from Tabl e2
where Tabl e2. F2 = Tabl el. F1
order by 1 desc)

FROM LRU: GROUP BY

Description. GROUP BY merges rows that have the same combination of values and/or NULLs
in the item list into a single row. Any aggregate functions in the select list are applied to each group
individually instead of to the dataset as awhole.

57

DML statements

Syntax.
SELECT ... FROM...
GROUP BY <itenpr [, <itemr ...]
<itent ::= colum-nane [COLLATE coll ation-nane]

| columm-alias
| columm-position
| expression

» Only non-negative integer literals will be interpreted as column positions. If
they are outside the range from 1 to the number of columns, an error is raised.
Integer values resulting from expressions or parameter substitutions are ssimply
invariables and will be used as such in the grouping. They will have no effect
though, astheir value is the same for each row.

* A GROUPBY item cannot be areferenceto an aggregate function (including one
that is buried inside an expression) from the same context.

e Thesdlect list may not contain expressions that can have different values within
agroup. To avoid this, the rule of thumb is to include each non-aggregate item
fromthe select listin the GROUPBY list (whether by copying, alias or position).

Note. If you group by a column position, the expression at that position is copied internally from
the select list. If it concerns a subquery, that subquery will be executed at least twice.

Grouping by alias, position and expressions
Changedin. 1.0,15,20

Description. In addition to column names, Firebird 2 allows column aliases, column positions and
arbitrary valid expressions as GROUP BY items.

Examples.
These three queries al achieve the same result:

sel ect strlen(lastname) as |en_nanme, count(*)
from peopl e
group by | en_nane

select strlen(lastnane) as |en_nane, count(*)
from peopl e
group by 1

sel ect strlen(lastnanme) as | en_nanme, count(*)
from peopl e
group by strlen(lastnane)

History. Grouping by UDF resultswas added in Firebird 1. Grouping by column positions, CASE
outcomes and a limited number of internal functionsin Firebird 1.5. Firebird 2 added column aiases
and expressionsin general as valid GROUP BY items (“expressionsin general” absorbing the UDF,
CASE and internal functionslot).

FROM LRU: HAVING: Stricter rules

Changedin. 15

Description. See Aggregate statements: Sricter HAVING and ORDER BY.

58

DML statements

FROM LRU: JOIN

Ambiguous field names rejected
Changedin. 1.0

Description. InterBase 6 accepts and executes statements like the one below, which refers to an
unqualified column name even though that name exists in both tables participating in the JOIN:

sel ect buses. name, garages. nane
from buses join garages on buses.garage_id = garage.id
where nane = ' Phideaux |11’

Theresults of such aquery are unpredictable. Firebird Dialect 3returnsan error if there are ambiguous
field namesin JOIN statements. Dialect 1 gives awarning but will execute the query anyway.

CROSS JOIN
Addedin. 2.0
Description. Firebird 2.0 and up support CROSS JOIN, which performs a full set multiplication

on the tables involved. Previously you had to achieve this by joining on a tautology (a condition that
isawaystrue) or by using the comma syntax, now deprecated.

Syntax.
SELECT ...
FROM <rel ati on> CROSS JO N <rel ati on>
<relation> ::= {table | view | cte | (select_stnt)} [[AS] alias]

Note: If you use CROSS JOIN, you can't use ON.
Example.

select * from Men cross join Wmen
order by Men.age, Wnen. age

-- old syntax:
-- select * fromMen join Women on 1 =1
-- order by Men.age, Wnen. age
-- comma syntax:
-- select * from Men, Wonen
-- order by Men.age, Wnen. age
Named columns JOIN
Addedin. 21

Description. A named columns join is an equi-join on the columns named in the USING clause.
These columns must exist in both relations.

Syntax.
SELECT ...
FROM <rel ation> [<join_type>] JON <rel ati on>
USI NG (col nane [, colnane ...])

59

DML statements

<rel ation>
<join_type>

{table | view| cte | (select_stnt)} [[AS] alias]
INNER | {LEFT | RIGHT | FULL} [CQUTER|

Example.

sel ect *
from books join shel ves
usi ng (shel f, bookcase)

The equivalent in traditional syntax:

sel ect *
from books b join shelves s
on b.shelf = s.shelf and b. bookcase = s. bookcase

Notes.

e The columns in the USING clause can be selected without qualifier. Be aware, however, that
doing so in outer joins doesn't always give the same result as selecting | ef t .col nane or
ri ght .col nane. One of the latter may be NULL while the other isn't; plain col name always
returns the non-NULL alternative in such cases.

» SELECT * from anamed columnsjoin returns each USING column only once. In outer joins, such

a column always contains the non-NULL alternative except for rows where the field is NULL in
both tables.

Natural JOIN
Added in. 21

Description. A natural join isan automatic equi-join on all the columnsthat exist in both relations.
If there are no common column names, a CROSS JOIN is produced.

Syntax.

SELECT ...
FROM <rel ati on> NATURAL [<join_type>] JON <rel ati on>

<rel ati on>
<join_type>

{table | view | cte | (select_stnt)} [[AS] alias]
INNER | {LEFT | RIGHT | FULL} [CQUTER]

Example.
select * fromPupils natural left join Tutors

Assuming that the Pupils and Tutors tables have two field names in common:
TUTOR and CLASS, the equivalent traditional syntax is:

select * fromPupils p left join Tutors t
on p.tutor =t.tutor and p.class = t.class

Notes.

e Common columns can be selected from a natural join without qualifier. Beware, however, that
doing so in outer joins doesn't aways gives the same result as selecting | ef t .col nanme or
ri ght .col nane. One of the latter may be NULL while the other isn't; plain col name always
returns the non-NULL alternative in such cases.

60

DML statements

e SELECT * from anatural join returns each common column only once. | n outer joins, such acolumn

aways contains the non-NULL alternative except for rows where the field is NULL in both tables.

FROM LRU: ORDER BY

Syntax.
SELECT ... FROM...
d?bER BY <ordering-itenr [, <ordering-items ...]
<ordering-itenm> ::= {col-nanme | col-alias | col-position |

[COLLATE col I ati on- nane]
[ASC[ENDI NG | DESC] ENDI NG]
[NULLS {FI RST| LAST}]

Order by column alias

Addedin. 20

Description. Firebird 2.0 and above support ordering by column alias.

Example.

sel ect rdb$character_set_id as charset_id,
rdb$col lation_id as coll _id,
rdb$col | ati on_nane as nane

fromrdb$col | ati ons

order by charset_id, coll_id

Ordering by column position causes * expansion

Changedin. 20

Description. If you order by column positionina“SELECT *” query, the engine will now expand
the * to determine the sort column(s).

Examples.
The following wasn't possiblein pre-2.0 versions:

select * fromrdb$coll ati ons
order by 3, 2

The following would sort the output set on Fi | ms. Di rect or in previous
versions. In Firebird 2 and up, it will sort on the second column of Books:

sel ect Books.*, Films.D rector from Books, Filns
order by 2

Ordering by expressions

Addedin. 15

Description. Firebird 1.5 introduced the possibility to use expressions as ordering items. Please
note that expressions consisting of a single non-negative whole number will be interpreted as column
positions and cause an exception if they're not in the range from 1 to the number of columns.

Example.

select x, y, note fromPairs

61

expr essi on}

DML statements

order by x+y desc

@ Note
The number of function or procedure invocations resulting from a sort based on a UDF
or stored procedure is unpredictable, regardless whether the ordering is specified by the
expression itself or by the column position number.

Notes.

» The number of function or procedure invocations resulting from a sort based on a UDF or stored
procedure is unpredictable, regardless whether the ordering is specified by the expression itself or
by the column position number.

» Only non-negative whole number literals are interpreted as column positions. A whole number
resulting from an expression evaluation or parameter substitution is seen as an integer invariable
and will lead to adummy sort, since its value is the same for each row.

NULLs placement
Changedin. 15,20

Description. Firebird 1.5 has introduced the per-column NULLS FIRST and NULLS LAST
directives to specify where NULLs appear in the sorted column. Firebird 2.0 has changed the default
placement of NULLSs.

Unless overridden by NULLS FIRST or NULLS LAST, NULLs in ordered columns are placed as
follows:

 InFirebird1.0and 1.5: at theend of the sort, regardlesswhether the order isascending or descending.
* InFirebird 2.0 and up: at the start of ascending orderings and at the end of descending orderings.

See dso the table below for an overview of the different versions.

Table 6.1. NULLs placement in ordered columns

Ordering NULLs placement
Firebird 1 Firebird 1.5 Firebird 2
order by Field [asc] bottom bottom top
order by Field desc bottom bottom bottom
order by Field [asc | desc] nullsfirst | — top top
order by Field [asc | desc] nulls last — bottom bottom

@ Notes
» Pre-existing databases may need a backup-restore cycle before they show the correct
NULL ordering behaviour under Firebird 2.0 and up.

e No index will be used on columns for which a non-default NULLS placement is
chosen. In Firebird 1.5, that is the case with NULLS FIRST. In 2.0 and higher, with
NULLSLAST on ascending and NULLS FIRST on descending sorts.

Examples.

select * from nsg
order by process_tinme desc nulls first

sel ect * from document

62

DML statements

order by strlen(description) desc
rows 10

sel ect doc_nunber, doc_date from payorder
uni on all

sel ect doc_nunber, doc_date from budgorder
order by 2 desc nulls last, 1 asc nulls first

Stricter ordering rules with aggregate statements
Changedin. 15

Description. See Aggregate statements: Stricter HAVING and ORDER BY.

FROM LRU: PLAN
Availablein. DSQL, ESQL, PSQL

Description. Specifies a user plan for the data retrieval, overriding the plan that the optimizer
would have generated automatically.

Syntax.
PLAN <pl an- expr >
<pl an- expr > ::= (<plan-item» [, <plan-itenm> ...])
| <sorted-itene
| <joined-itenr
| <nerged-itene

<sorted-itemr ::= SORT (<plan-itenp)
<joined-item» ::= JON (<plan-itenp, <plan-item» [, <plan-iten> ...])
<nerged-item> ::= [SORT] MERGE (<sorted-itemp, <sorted-itemr [, <sorted
<pl an-itene ::= <basic-item» | <plan-expr>
<basic-itenp ::= <relation>
{ NATURAL -- natural s
| I NDEX (<indexlist>) -- indexed ri
| ORDER index [INDEX (<indexlist>)]} -- navigati ol
<rel ation> ;.= table
| view [table] -- en een SP
<i ndexl i st > ::= index [, index ...]
table, view ;.= nanme or alias

Handling of user PLANs improved
Changedin. 20

Description. Firebird 2 has implemented the following improvements in the handling of user-
specified PLANS:

 Plan fragments are propagated to nested levels of joins, enabling manual optimization of complex
outer joins.

63

DML statements

 User-supplied plans will be checked for correctness in outer joins.

« Short-circuit optimization for user-supplied plans has been added.

» A user-specified access path can be supplied for any SEL ECT-based statement or clause.
ORDER with INDEX

Changedin. 2.0

Description. A single plan item can now contain both an ORDER and an INDEX directive (in
that order).

Example.
pl an (MyTabl e order ix_nyfield index (ix_this, ix_that))
PLAN must include all tables
Changedin. 20

Description. InFirebird 2 and up, aPLAN clause must handle al the tables in the query. Previous
versions sometimes accepted incomplete plans, but thisis no longer the case.

FROM LRU: Relation alias makes real name unavailable
Changedin. 2.0

Description. If yougiveatableor view an aliasin aFirebird 2.0 or above statement, you must use
the alias, not the table name, if you want to qualify fields from that relation.

Examples.
Correct usage:
sel ect pears fromFruit
select Fruit.pears fromFruit
sel ect pears fromFruit F
select F.pears fromFruit F
No longer possible:

select Fruit.pears fromFruit F

FROM LRU: ROWS
Availablein. DSQL, PSQL
Addedin. 20

Description. Limits the amount of rows returned by the SELECT statement to a specified number
or range.

Syntax.
With asingle SELECT:

SELECT <col ums> FROM . ..
[WHERE . . .]

DML statements

FROM

UNIONSs

[ORDER BY ...]
ROWS <mp [TO <n>]

<col ums> = The usual output colum specifications.
<nme, <n> = Any expression evaluating to an integer.
With a UNION:

SELECT [FIRST p] [SKIP q] <colums> FROM ... [WHERE ...]
UNI ON [ALL | DI STI NCT]

SELECT [FIRST r] [SKIP s] <colums> FROM ... [WHERE ...]

[ORDER BY ...]
ROAS <> [TO <n>]

With a single argument m the first mrows of the dataset are returned.
Points to note:

» |f m> the total number of rowsin the dataset, the entire set is returned.
e If m=0, an empty set is returned.
e |f m<O0, anerror israised.

With two arguments mand n, rows mto n of the dataset are returned, inclusively. Row numbers are
1-based.

Points to note when using two arguments:

 If m> the total number of rowsin the dataset, an empty set is returned.

« |f mlieswithin the set but n doesn't, the rows from mto the end of the set are returned.
e Ifm<lorn<1, anerrorisraised.

e If n =m1, an empty set isreturned.

e If n<ml, anerrorisraised.

The SQL-compliant ROWS syntax obviates the need for FIRST and SKIP, except in one case: a SKIP
without FIRST, which returns the entire remainder of the set after skipping a given number of rows.
(You can often “fake it” though, by supplying a second argument that you know to be bigger than
the number of rowsin the set.)

You cannot use ROWS together with FIRST and/or SKIP in a single SELECT statement, but is it
valid to use one form in the top-level statement and the other in subselects, or to use the two syntaxes
in different subselects.

When used with a UNION, the ROWS subclause appliesto the UNION as awhole and must be placed
after the last SELECT. If you want to limit the output of one or more individual SELECTSs within
the UNION, you have two options: either use FIRST/SKIP on those SELECT statements (probably
of limited use, as you can't use ORDER BY on individual selects within a union), or convert them to
derived tables with ROWS clauses.

ROWS can aso be used with the UPDATE and DELETE statements.

LRU: UNION
Availablein. DSQL, ESQL, PSQL
in subqueries
Changedin. 20

Description. UNIONSs are now alowed in subqueries. This applies not only to column-level
subqueriesin a SELECT list, but also to subqueriesin ANY |[SOME, ALL and IN predicates, as well
as the optional SELECT expression that feeds an INSERT.

65

DML statements

Example.

sel ect nane, phone, hourly rate from cl owns
where hourly_rate < all
(select hourly_rate fromjugglers
uni on
select hourly_rate from acrobats)
order by hourly rate

UNION DISTINCT
Addedin. 20

Description. Y oucannow usetheoptional DISTINCT keyword when definingaUNION. Thiswill
show duplicate rows only onceinstead of every timethey occur in one of thetables. Since DISTINCT,
being the opposite of ALL, isthe default mode anyway, this doesn't add any new functionality.

Syntax.

SELECT (...) FROM (...)
UNI ON [DI STINCT | ALL]
SELECT (...) FROM (...)

Example.

sel ect nane, phone fromtranslators
uni on di stinct
sel ect nane, phone from proofreaders

Translators who also work as proofreaders (a hot uncommon combination) will
show up only oncein the result set, provided their phone number isthe samein both
tables. The same result would have been obtained without DISTINCT. With ALL,
they would appear twice.

FROM LRU: WITH LOCK
Availablein. DSQL, PSQL
Addedin. 15

Description: WITH LOCK provides alimited explicit pessimistic locking capability for cautious
use in conditions where the affected row set is:

a. extremely small (ideally, a singleton), and
b. precisely controlled by the application code.

: Thisisfor expertsonly!

The need for a pessimistic lock in Firebird is very rare indeed and should be well
understood before use of this extension is considered.

It is essential to understand the effects of transaction isolation and other transaction
attributes before attempting to implement explicit locking in your application.

Syntax.

SELECT ... FROM single_table
[WHERE . . .]
[FOR UPDATE [OF ...]]

66

DML statements

W TH LOCK

If the WITH LOCK clause succeeds, it will secure alock on the selected rows and prevent any other
transaction from obtaining write accessto any of thoserows, or their dependants, until your transaction
ends.

If the FOR UPDATE clauseisincluded, thelock will be applied to each row, oneby one, asit isfetched
into the server-side row cache. It becomes possible, then, that alock which appeared to succeed when
requested will nevertheless fail subsequently, when an attempt is made to fetch a row which becomes
locked by another transaction.

WITH LOCK can only be used with atop-level, single-table SELECT statement. It is not available:

* inasubquery specification;

« for joined sets;

» with the DISTINCT operator, a GROUP BY clause or any other aggregating operation;
o withaview;

 with the output of a selectable stored procedure;

» with an external table.

A lengthier, more in-depth discussion of “SELECT ... WITH LOCK” isincluded in the Notes. Itisa
must-read for everybody who considers using this feature.

UPDATE

Availablein. DSQL, ESQL, PSQL

Description. Changes valuesin atable or in one or more tables underlying a view. The columns
affected are specified in the SET clause; the rows affected may be limited by the WHERE and ROWS
clauses. If neither WHERE nor ROWS is present, al the recordsin the table will be updated.

Syntax.
UPDATE [TRANSACTI ON nane] target [[AS] alias]
SET col = newal [, col = newal ...]
[WHERE {search-conditions | CURRENT OF cursornane}]
[PLAN pl an_it ens]
[ORDER BY sort _itens]
[ROAE <n» [TO <n>]]
[RETURNI NG <val ues> [I NTO <vari abl es>]]
t ar get = A table or updatable view
<nme, <n> = Any expression evaluating to an integer.
<val ues> = value_expression [, value_expression ...]
<vari abl es> = :varnanme [, :varnanme ...]

@ Restrictions
e The TRANSACTION directiveisonly availablein ESQL.

* Inapure DSQL session, WHERE CURRENT OF isn't of much use,
since there exists no DSQL statement to create a cursor.

* No column may be SET more than once in the same UPDATE
Statement.

* The“INTO<var i abl es>" subclauseisonly availablein PSQL.

* When returning values into the context variable NEW, this name
must not be preceded by acolon (“:).

e ThePLAN, ORDERBY, ROWSand RETURNING clausesare not
availablein ESQL.

67

DML statements

Using an alias

If you give atable or view an alias, you must use the alias, not the table name, if you want to qualify
fields from that relation.

Examples.
Correct usage:
update Fruit set soort = 'pisang' where ...
update Fruit set Fruit.soort = 'pisang' where ...
update Fruit F set soort = 'pisang' where ...
update Fruit F set F.soort = 'pisang' where ...
Not possible:
update Fruit F set Fruit.soort = 'pisang' where ...

The SET clause

The SET clause specifies the values to be written to the affected row(s). It is a comma-separated list
of assignments, each with a column name on the left hand side and a value expression on the right
hand side.

String literals may optionally be preceded by a character set name, using introducer syntax, in order
to let the engine know how to interpret the input.

Examples.

updat e addresses
set city = 'Saint Petersburg', citycode = 'PET
where city = 'Leningrad’

updat e enpl oyees
set salary = 2.5 * salary
where title = ' CEO

updat e Peopl e
set nane = | SMB859 1 'Hans-Joérg Schafer' -- notice the ' ' prefix
where id = 53662

Itisperfectly legal toinclude target columnsin the value expressions on the right hand side, providing
values for themselves and/or other columns. If thisis done, the value used on the right hand side will
always be the old column value, even if an assignment has already been made to the same column
earlier in thelist. The following example illustrates this.

Given table TSET:

A B

1 0
2 0

the following statement:
update tset set a=5, b=a

will changeits state to

68

DML statements

>

oo
NER Y m

Notice how the old values of a (1 and 2) are used for the update of b, even though a itself has already
been assigned a new value (5).

@ Note
This has not always been the case. In pre-2.5 versions of Firebird, new column values
became immediately available for subsequent assignments in the list. This is non-
standard behaviour; hence it has been changed.

However, if the O dSet O auseSenant i cs parameter in fi rebird. conf has

been set to 1, Firebird will continue to show the old behaviour. This parameter will be
deprecated and removed somewhere in the future.

The WHERE clause

A WHERE clause limits the update action to the rows matching the search condition, or —in ESQL
and PSQL only —to the current row of anamed cursor.

Examples.
update People set firstname = 'Boris' where | astnanme = 'Johnson'
update Cities set nanme = :arg_name where current of Cur_Cities; -- ESQ

Anupdateusing WHERE CURRENT OF iscalled apositioned update, becauseit updatestherecord at
the current position. An update using “WHERE <condi t i on>" iscalled asearched update, because
the engine has to search for the record(s) meeting the condition.

ORDER BY and ROWS

If at all, ORDER BY and ROWS only make sense when used together. However, they are also valid
separately.

With a single argument m ROWS limits the update to the first mrows of the dataset defined by the
table or view and the optional WHERE and ORDER BY clauses.

With two arguments mand n, the update is limited to rows mto n inclusively. Row numbers are 1-
based.

Example.

-- give the 20 poorest guys a break
updat e enpl oyees

set salary = salary + 50

order by salary asc

rows 20

Points to note when using ROWS with one argument;

 If m> thetotal number of rowsin the dataset, the entire set is updated.
* If m=0, no rows are updated.
* If m<O0, an error israised.

Points to note when using ROWS with two arguments:

69

DML statements

 If m> thetotal number of rowsin the dataset, no rows are updated.

* If mlieswithin the set but n doesn't, the rows from mto the end of the set are updated.
* Ifm<lorn<1, anerorisraised.

e If n =m1, no rows are updated.

o If n <m1, anerror israised.

RETURNING

An UPDATE statement modifying at most one row may optionally include aRETURNING clausein
order to return values from the updated row. The clause, if present, need not contain all the modified
columns and may also contain other columns or expressions. The returned values reflect any changes
that may have been made in BEFORE triggers, but not those in AFTER triggers. OLD.f i el dnane
and NEW f i el dname may both be used in thelist of columnsto return; for field names not preceded
by either of these, the new valueis returned.

Example.

update Schol ars
set firstnane = 'Hugh', |astname = 'Pickering'
where firstnane = 'Henry' and | astname = 'Hi ggins'
returning id, old.lastnane, new. | astnane

In DSQL, a statement with a RETURNING clause always returns exactly one row. If no record was
actually updated, the fields in this row are all NULL. This behaviour may change in a later version
of Firebird. In PSQL, if no row was updated, nothing is returned, and the target variables keep their
existing values.

Updating BLOB columns

Updating a BLOB column aways replaces the entire contents. Even the BLOB D, the “handle” that
is stored directly in the column, is changed. BLOBs can be updated if:

1. Theclient application has made special provisionsfor this operation, using the Firebird API. In this
case, the modus operandi is application-specific and outside the scope of this manual.

2. The new value is a text string of at most 32767 bytes. Please naotice: if the value is not a string
literal, beware of concatenations, as these may exceed the maximum length.

3. Thesourceisitself aBLOB column or, more generally, an expression that returns a BLOB.

4. You usethe INSERT CURSOR statement (ESQL only).

UPDATE OR INSERT

Availablein. DSQL, PSQL

UPDATE OR INSERT insertsanew record or updates one or more existing records. The action taken
depends on the values provided for the columns in the MATCHING clause (or, if the latter is absent,
in the primary key). If there are records found matching those values, they are updated. If not, a new
record isinserted.

A match only countsif all the valuesin the MATCHING or PK columns are equal. Matching is done
with the ISNOT DISTINCT operator, so one NULL matches another.

Syntax.

UPDATE OR | NSERT | NTO
{tabl ename | viewname} [(<colums>)]

70

DML statements

VALUES (<val ues>)
[MATCHI NG (<col ums>)]
[RETURNI NG <val ues> [I NTO <vari abl es>]]

<col ums> = colname [, colname ...]
<val ues> = value [, value]
<vari abl es> = :varnane [, :varnane ...]

@ Restrictions
* If thetablehasno PK, the MATCHING clause becomes mandatory.

* Inthe MATCHING list as well as in the update/insert column list,
each column name may occur only once.

» The“INTO<vari abl es>" subclauseisonly availablein PSQL.

* When valuesarereturned into the context variable NEW, thisname
must not be preceded by acolon (“:).

Example.

update or insert into Cows (Name, Nunber, Location)
val ues (' Suzy Creantheese', 3278823, 'Green Pastures')
mat chi ng (Nunber)
returning rec_id into :id;

The RETURNING clause

The optional RETURNING clause, if present, need not contain all the columns mentioned in the
statement and may also contain other columns or expressions. The returned valuesreflect any changes
that may have been made in BEFORE triggers, but not thosein AFTER triggers. OLD.f i el dnane
and NEW f i el dname may both be usedin thelist of columnsto return; for field names not preceded
by either of these, the new valueis returned.

In DSQL, astatement withaRETURNING clause always returns exactly onerow. If aRETURNING
clause is present and more than one matching record is found, an error is raised. This behaviour may
changein alater version of Firebird.

71

Chapter 7. Built-in functions and
variables

Context variables
CURRENT _CONNECTI ON

Availablein. DSQL, PSQL
Addedin. 15
Changedin. 2.1
Description. CURRENT_CONNECTI ON contains the unique identifier of the current connection.
Type. INTEGER
Examples.
sel ect current_connection from rdb$dat abase
execut e procedure P_Logi n(current_connecti on)

The value of CURRENT_CONNECTI ON is stored on the database header page and reset to O upon
restore. Since version 2.1, it is incremented upon every new connection. (In previous versions, it was
only incremented if the client read it during a session.) As a result, CURRENT _CONNECTI ON now
indicates the number of connections since the creation — or most recent restoration — of the database.

CURRENT _DATE

Availablein. DSQL, PSQL, ESQL
Description. CURRENT_DATE returns the current server date.
Type. DATE
Syntax.
CURRENT _DATE
Examples.

sel ect current _date fromrdb$dat abase
-- returns e.g. 2011-10-03

Notes.
» WithinaPSQL module (procedure, trigger or executable block), the value of CURRENT _DATE will
remain constant every timeit isread. If multiple modules call or trigger each other, the value will

remain constant throughout the duration of the outermost module. If you need a progressing value
in PSQL (e.g. to measure timeintervals), use' TODAY' .

CURRENT ROLE

Availablein. DSQL, PSQL

72

Built-in functions and variables

Addedin. 1.0

Description. CURRENT_ROLE isacontext variable containing the role of the currently connected
user. If thereis no active role, CURRENT _RCLE is NONE.

Type. VARCHAR(31)
Example.

if (current_role <> 'MANAGER)
t hen exception only_managers_may_del et e;
el se
del ete from Custoners where custno = :custno;

CURRENT _ROLE alwaysrepresentsavalid role or NONE. If auser connectswith anon-existing role,
the engine silently resetsit to NONE without returning an error.

CURRENT _TI ME
Availablein. DSQL, PSQL, ESQL
Changedin. 2.0

Description. CURRENT_TI ME returns the current server time. In versions prior to 2.0, the
fractional part used to be always“. 0000, giving an effective precision of 0 decimals. From Firebird
2.0 onward you can specify a precision when polling this variable. The default is still 0 decimals, i.e.
seconds precision.

Type. TIME
Syntax.

CURRENT_TI ME [(precision)]

precision ::= 0| 1] 2| 3

The optional pr eci si on argument is not supported in ESQL.
Examples.

sel ect current _tinme fromrdb$dat abase
-- returns e.g. 14:20:19.6170

sel ect current _time(2) fromrdb$dat abase
-- returns e.g. 14:20:23.1200

Notes.

e Unlike CURRENT _TI ME, the default precision of CURRENT _TI MESTAMP has changed to 3
decimals. Asaresult, CURRENT _TI MESTAMP isno longer the exact sum of CURRENT _DATE and
CURRENT _TI MVE, unless you explicitly specify a precision.

» WithinaPSQL module (procedure, trigger or executable block), the value of CURRENT _TI ME will
remain constant every timeit is read. If multiple modules call or trigger each other, the value will
remain constant throughout the duration of the outermost module. If you need a progressing value
in PSQL (e.g. to measure time intervals), use’ NOW .

CURRENT_TI MESTAMP

Availablein. DSQL, PSQL, ESQL

73

Built-in functions and variables

Changedin. 20

Description. CURRENT _TI MESTAMP returnsthe current server date and time. In versions prior to
2.0, the fractional part used to be aways*“. 0000”, giving an effective precision of 0 decimals. From
Firebird 2.0 onward you can specify aprecision when polling this variable. The default is 3 decimals,
i.e. milliseconds precision.

Type. TIMESTAMP
Syntax.

CURRENT_TI MESTAMP [(preci sion)]

precision ::= 0| 1] 2] 3

The optional pr eci si on argument is not supported in ESQL.
Examples.

sel ect current _tinmestanp from rdb$dat abase
-- returns e.g. 2008-08-13 14:20:19.6170

sel ect current _tinmestanp(2) from rdb$dat abase
-- returns e.g. 2008-08-13 14:20:23.1200

Notes.

» The default precision of CURRENT_TI ME is still 0 decimals, so in Firebird 2.0 and up
CURRENT _TI MESTAMP is no longer the exact sum of CURRENT _DATE and CURRENT _TI ME,
unless you explicitly specify a precision.

* Within a PSQL module (procedure, trigger or executable block), the vaue of
CURRENT _TI MESTAMP will remain constant every time it is read. If multiple modules call or
trigger each other, the value will remain constant throughout the duration of the outermost module.
If you need a progressing value in PSQL (e.g. to measure time intervals), use’ NOW .

CURRENT_TRANSACTI ON

Availablein. DSQL, PSQL
Addedin. 15
Description. CURRENT_TRANSACTI ON containsthe unique identifier of the current transaction.
Type. INTEGER
Examples.
sel ect current_transacti on from rdb$dat abase
New. Txn_I D = current _transacti on;

The value of CURRENT _TRANSACTI ONis stored on the database header page and reset to O upon
restore. It isincremented with every new transaction.

CURRENT USER

Availablein. DSQL, PSQL

Addedin. 1.0

74

Built-in functions and variables

Description. CURRENT _USERisacontext variable containing the name of the currently connected
user. It isfully equivalent to USER.

Type. VARCHAR(31)
Example.

create trigger bi_customers for customers before insert as

begi n
New. added_by = CURRENT_USER
New. pur chases = 0;

end

DELETI NG

Availablein. PSQL
Addedin. 15

Description. Available in triggers only, DELETI NG indicates if the trigger fired because of a
DELETE operation. Intended for use in multi-action triggers.

Type. boolean
Example.

if (deleting) then
begi n
insert into Renmoved_Cars (id, make, nodel, renoved)
val ues (old.id, old.make, old.nodel, current_tinestanm);
end

GDSCODE

Availablein. PSQL
Addedin. 15
Changedin. 20

Description. Ina“WHEN ... DO” error handling block, the GDSCODE context variable containsthe
numerical representation of the current Firebird error code. Prior to Firebird 2.0, GDSCODE was only
setin WHEN GDSCODE handlers. Now it may also be non-zeroin WHEN ANY, WHEN SQLCODE
and WHEN EXCEPTION blocks, provided that the condition raising the error corresponds with a
Firebird error code. Outside error handlers, GDSCCODE isaways 0. Outside PSQL it doesn't exist at all.

Type. INTEGER

Example.

when gdscode grant_obj notfound, gdscode grant fld_notfound,
gdscode grant _nopriv, gdscode grant_nopriv_on_base
do
begi n
execute procedure | og _grant_error(gdscode);
exit;
end

Please notice: After WHEN GDSCODE, you must use symbolic names like grant_obj notfound etc.
But the GDSCODE context variable isan INTEGER. If you want to compare it against acertain error,
you have to use the numeric value, e.g. 335544551 for grant_obj_notfound.

75

Built-in functions and variables

| NSERTI NG

NEW

Availablein. PSQL
Addedin. 15

Description. Availablein triggers only, | NSERTI NGindicates if the trigger fired because of an
INSERT operation. Intended for use in multi-action triggers.

Type. boolean
Example.
if (inserting or updating) then
begi n
if (new.serial_numis null) then

new. seri al _num = gen_i d(gen_serials, 1);
end

Availablein. PSQL, triggers only
Changedin. 15,20

Description. NEWcontains the new version of a database record that has just been inserted or
updated. Starting with Firebird 2.0 it isread-only in AFTER triggers.

Type. Datarow

@ Note

In multi-action triggers—introduced in Firebird 1.5 — NEWis always available. But if the
trigger isfired by aDELETE, therewill be no new version of therecord. In that situation,
reading from NEWwill alwaysreturn NULL ; writing to it will cause aruntime exception.

Availablein. DSQL, PSQL, ESQL
Changedin. 20

Description. ' NOW is not avariable but a string literal. It is, however, special in the sense that
when you CAST() it to a date/time type, you will get the current date and/or time. The fractional part
of the time used to be aways “. 0000”, giving an effective seconds precision. Since Firebird 2.0 the
precision is 3 decimals, i.e. milliseconds. ' NOW is case-insensitive, and the engine ignores leading
or trailing spaces when casting.

Note. Please be advised that these shorthand expressions are evaluated immediately at parse time
and stay the same aslong asthe statement remains prepared. Thus, evenif aquery isexecuted multiple
times, thevaluefor e.g. “timestamp 'now™ won't change, no matter how much time passes. If you need
the value to progress (i.e. be evaluated upon every call), use afull cast.

Type. CHAR(3)
Examples.

sel ect 'Now from rdb$dat abase
-- returns ' Now

76

Built-in functions and variables

sel ect cast(' Now as date) from rdb$dat abase
-- returns e.g. 2008-08-13

sel ect cast('now as time) fromrdb$dat abase
-- returns e.g. 14:20:19.6170

sel ect cast (' NON as tinmestanp) from rdb$dat abase
-- returns e.g. 2008-08-13 14:20:19.6170

Shorthand syntax for the last three statements:

sel ect date 'Now from rdb$dat abase
select tinme 'now fromrdb$dat abase
select tinmestanp ' NOW from rdb$dat abase

Notes.

e ' NOW always returns the actual date/time, even in PSQL modules, where CURRENT _DATE,
CURRENT _TI ME and CURRENT _TI MESTAMP return the same value throughout the duration of
the outermost routine. Thismakes' NOW useful for measuring timeintervalsintriggers, procedures
and executable blocks.

* Except in the situation mentioned above, reading CURRENT_DATE, CURRENT_TI ME
and CURRENT_TI MESTAMP is generally preferable to casting ' NON . Be aware though
that CURRENT_TI ME defaults to seconds precision; to get milliseconds precision, use
CURRENT_TI ME(3).

aLD

Availablein. PSQL, triggers only
Changedin. 15,20

Description. OLDcontainsthe existing version of adatabase record just before adeletion or update.
Starting with Firebird 2.0 it is read-only.

Type. Datarow

@ Note
In multi-action triggers—introduced in Firebird 1.5—-OLDisaways available. But if the
trigger is fired by an INSERT, there is obviously no pre-existing version of the record.
In that situation, reading from OLD will always return NULL; writing to it will cause a
runtime exception.

ROW COUNT
Availablein. PSQL
Addedin. 15

Changedin. 20

Description. The ROW COUNT context variable contains the number of rows affected by the most
recent DML statement (INSERT, UPDATE, DELETE, SELECT or FETCH) in the current trigger,
stored procedure or executable block.

Type. INTEGER

Example.

77

Built-in functions and variables

update Figures set Number = 0 where id = :id;
if (row_count = 0) then
insert into Figures (id, Number) values (:id, 0);
Behaviour with SELECT and FETCH.
» After asingleton SELECT, ROW COUNT is 1if adatarow was retrieved and O otherwise.

* InaFOR SELECT loop, ROW COUNT isincremented with every iteration (starting at O before the
first).

» After a FETCH from a cursor, ROW COUNT is 1 if a data row was retrieved and O otherwise.
Fetching more records from the same cursor does not increment ROV COUNT beyond 1.

* InFirebird 1.5.x, ROW COUNT is 0 after any type of SELECT statement.

= Note

ROW_COUNT cannot be used to determine the number of rows affected by an EXECUTE
STATEMENT or EXECUTE PROCEDURE command.

SQL CODE
Availablein. PSQL
Addedin. 15
Changedin. 20

Deprecated in. 25.1

Description. Ina“WHEN ... DO” error handling block, the SQLCODE context variable contains
the current SQL error code. Prior to Firebird 2.0, SQLCODE was only set in WHEN SQLCODE and
WHEN ANY handlers. Now it may also be non-zeroin WHEN GDSCODE and WHEN EXCEPTION
blocks, provided that the condition raising the error correspondswith an SQL error code. Outside error
handlers, SQLCODE is aways 0. Outside PSQL it doesn't exist at al.

Type. INTEGER

Example.
when any
do
begi n
if (sqlcode <> 0) then
Msg = 'An SQ. error occurred!';
el se
Msg = ' Somet hi ng bad happened!';
exception ex_custom Msg;
end

Important notice. SQLCODE ishow deprecated in favour of the SQL-2003-compliant SQLSTATE
status code. Support for SQL CODE and WHEN SQL CODE will bediscontinued in somefutureversion
of Firebird.

SQLSTATE

Availablein. PSQL

Addedin. 251

78

Built-in functions and variables

Description. Ina“WHEN ... DO” error handler, the SQLSTATE context variable contains the 5-
character, SQL-2003-compliant status code resulting from the statement that raised the error. Outside
error handlers, SQLSTATE is always '00000'. Outside PSQL it isnot available at all.

Type. CHAR(5)

Example.
when any
do
begi n
Msg = case sqlstate
when ' 22003" then 'Nuneric val ue out of range.'
when ' 22012' then 'Division by zero.'
when ' 23000 then 'Integrity constraint violation.'
el se ' Sonet hi ng bad happened! SQ.STATE ="' || sqlstate
end;
exception ex_custom Msg;
end
Notes.

* SQLSTATE is destined to replace SQLCODE. The latter is now deprecated in Firebird and will
disappear in some future version.

* Firebird does not (yet) support the syntax “WHEN SQLSTATE ... DO". You have to use WHEN
ANY and test the SQLSTATE variable within the handler.

» Each SQLSTATE code is the concatenation of a 2-character class and a 3-character subclass.
Classes 00 (successful completion), 01 (warning) and 02 (no data) represent completion conditions.
Every status code outside these classes is an exception. Because classes 00, 01 and 02 don't raise
an error, they won't ever show up in the SQLSTATE variable.

» For acompletelisting of SQLSTATE codes, consult the Appendix to the Firebird 2.5 Release Notes
[http://www.firebirdsqgl.org/rlsnotesh/rl snotes25.htmil#rnfb25-appx-sgl states).

" TODAY

Availablein. DSQL, PSQL, ESQL

Description. ' TODAY' isnot avariable but astring literal. It is, however, special in the sense that
when you CAST() it to a date/time type, you will get the current date. ' TODAY' is case-insensitive,
and the engine ignores leading or trailing spaces when casting.

Type. CHAR(5)
Examples.

sel ect ' Today' from rdb$dat abase
-- returns ' Today'

sel ect cast (' Today' as date) from rdb$dat abase
-- returns e.g. 2011-10-03

sel ect cast (' TODAY' as tinestanp) from rdb$dat abase
-- returns e.g. 2011-10-03 00: 00: 00. 0000

Shorthand syntax for the last two statements:

sel ect date ' Today' from rdb$dat abase
sel ect tinmestanp ' TODAY' from rdb$dat abase

79

http://www.firebirdsql.org/rlsnotesh/rlsnotes25.html#rnfb25-appx-sqlstates
http://www.firebirdsql.org/rlsnotesh/rlsnotes25.html#rnfb25-appx-sqlstates

Built-in functions and variables

Notes.

« ' TODAY' aways returns the actual date, even in PSQL modules, where CURRENT _DATE,
CURRENT_TI ME and CURRENT_TI MESTAMP return the same value throughout the duration
of the outermost routine. This makes ' TODAY' useful for measuring time intervals in triggers,
procedures and executable blocks (at least if your procedures are running for days).

» Except in the situation mentioned above, reading CURRENT _DATE, is generally preferable to
casting ' NOW .

" TOMORROW
Availablein. DSQL, PSQL, ESQL

Description. ' TOMORROW isnot avariable but astring literal. It is, however, special in the sense
that when you CAST() it to adate/time type, you will get the date of the next day. Seeaso' TODAY' .

Type. CHAR(8)
Examples.

sel ect ' Tonmorrow fromrdb$dat abase
-- returns ' Tonorrow

sel ect cast (' Tonorrow as date) from rdb$dat abase
-- returns e.g. 2011-10-04

sel ect cast (' TOMORROW as tinmestanp) fromrdb$dat abase
-- returns e.g. 2011-10-04 00: 00: 00. 0000

Shorthand syntax for the last two statements:

sel ect date ' Tomorrow from rdb$dat abase
sel ect tinmestanp ' TOMORROW from rdb$dat abase

UPDATI NG

Availablein. PSQL
Addedin. 15

Description. Available in triggers only, UPDATI NG indicates if the trigger fired because of an
UPDATE operation. Intended for use in multi-action triggers.

Type. boolean
Example.
if (inserting or updating) then
begi n
if (new.serial_numis null) then

new. serial _num = gen_id(gen_serials, 1);
end

" YESTERDAY

Availablein. DSQL, PSQL, ESQL

Description. ' YESTERDAY' is not a variable but a string literal. It is, however, special in the
sense that when you CAST() it to a date/time type, you will get the date of the day before. See also
" TODAY" .

80

Built-in functions and variables

Type. CHAR(9)
Examples.

sel ect 'Yesterday' from rdb$database
-- returns ' Tonorrow

sel ect cast (' Yesterday as date) from rdb$dat abase
-- returns e.g. 2011-10-02

sel ect cast (' YESTERDAY' as tinestanp) from rdb$dat abase
-- returns e.g. 2011-10-02 00: 00: 00. 0000

Shorthand syntax for the last two statements:

sel ect date 'Yesterday' from rdb$dat abase
sel ect tinmestanp ' YESTERDAY' from rdb$dat abase

USER

Availablein. DSQL, PSQL
Added in. InterBase

Description. USER is a context variable containing the name of the currently connected user. It
isfully equivalent to CURRENT_USER.

Type. VARCHAR(31)

Example.

create trigger bi_custoners for customers before insert as

begi n
New. added_by = USER;
New. pur chases = O0;
end

Scalar functions
ABS()

Availablein. DSQL, PSQL

Added in. 21

Description. Returns the absolute value of the argument.
Result type. Numerical

Syntax.

ABS (nunber)
I Important

If the external function ABS is declared in your database, it will override the internal
function. To maketheinternal function available, DROP or ALTER theexternal function

(UDF).

81

Built-in functions and variables

ACOS()

Availablein. DSQL, PSQL
Addedin. 21
Description. Returnsthe arc cosine of the argument.
Result type. DOUBLE PRECISION
Syntax.
ACOS (nunber)
» Theresultisan anglein therange [0, #].

« If the argument is outside the range [-1, 1], NaN is returned.
| I mportant

If the external function ACOS is declared in your database, it will override the internal
function. To maketheinternal function available, DROP or ALTER theexternal function

(UDF).
ASCIl_CHAR()
Availablein. DSQL, PSQL
Addedin. 21

Description. Returnsthe ASCII character corresponding to the number passed in the argument.
Result type. [VAR]CHAR(1) CHARACTER SET NONE
Syntax.

ASCI | _CHAR (<code>)
<code> ::= an integer in the range [O0..255]

I mportant

* If the external function ASCI | _CHAR is declared in your database, it will override
the internal function. To make the internal function available, DROP or ALTER the
external function (UDF).

* If you are used to the behaviour of the ASCI | _ CHAR UDF, which returns an empty

string if the argument is O, please notice that the internal function correctly returns a
character with ASCII code O here.

ASCII_VAL()

Availablein. DSQL, PSQL
Addedin. 21
Description. Returns the ASCII code of the character passed in.

Result type. SMALLINT

82

Built-in functions and variables

Syntax.

ASCI | _VAL (ch)

ch ::= a [VARICHAR or text BLOB of max. 32767 bytes

* If the argument is a string with more than one character, the ASCII code of the
first character is returned.

* If the argument isan empty string, O is returned.
* If theargument isNULL, NULL isreturned.

« If the first character of the argument string is multi-byte, an error is raised. (A
bug in Firebird 2.1-2.1.3 and 2.5 causes an error to be raised if any character in
the string is multi-byte. Thisisfixed in versions 2.1.4 and 2.5.1.)

I mportant

If the external function ASCI | _VAL is declared in your database, it will override the
internal function. To maketheinternal function available, DROP or ALTER the external
function (UDF).

ASIN()

Availablein. DSQL, PSQL
Addedin. 21
Description. Returnsthe arc sine of the argument.
Result type. DOUBLE PRECISION
Syntax.
ASI N (nunber)
» Theresult isan anglein the range [-#/2, #/2].

« If the argument is outside the range [-1, 1], NaN is returned.
I I mportant

If the external function ASI N is declared in your database, it will override the internal
function. To maketheinternal function available, DROP or ALTER the external function

(UDF).
ATAN()
Availablein. DSQL, PSQL
Addedin. 21
Description. Returnsthe arc tangent of the argument.
Result type. DOUBLE PRECISION

Syntax.
ATAN (nunber)

83

Built-in functions and variables

e Theresult isan anglein the range <-#/2, #/2>.

| I mportant

If the external function ATAN is declared in your database, it will override the internal
function. To maketheinternal function available, DROP or ALTER theexternal function
(UDF).

ATAN2()

Availablein. DSQL, PSQL
Addedin. 21

Description. Returns the angle whose sine-to-cosine ratio is given by the two arguments, and
whose sine and cosine signs correspond to the signs of the arguments. This allows results across the
entire circle, including the angles -#/2 and #/2.

Result type. DOUBLE PRECISION
Syntax.
ATAN2 (y, X)
» Theresult isan anglein the range [-#, #].
 If x isnegative, theresultis#if y is0, and -#if y is-0.

 If bothy and x are 0, the result is meaningless. Starting with Firebird 3, an error
will beraised if both arguments are 0.

i | mportant

If the external function ATANZ is declared in your database, it will override the internal
function. To maketheinternal function available, DROP or ALTER theexternal function

(UDF).

Notes.

* A fully equivalent description of this function is the following: ATAN2(y, x) is the angle between
the positive X-axis and the line from the origin to the point (x, y). This also makes it obvious that
ATAN2(0, 0) is undefined.

» If x isgreater than 0, ATANZ2(y, x) isthe same as ATAN(y/x).

« If both sine and cosine of the angle are already known, ATANZ2(si n, cos) givesthe angle.

BIN_AND()
Availablein. DSQL, PSQL
Addedin. 21
Description. Returnsthe result of the bitwise AND operation on the argument(s).
Result type. INTEGER or BIGINT

Syntax.
Bl N_AND (numnber [, nunber ...])

84

Built-in functions and variables

I mportant

If the external function BI N_AND is declared in your database, it will override the
internal function. To maketheinternal function available, DROP or AL TER the external
function (UDF).

BIN_OR()

Availablein. DSQL, PSQL

Addedin. 2.1

Description. Returnsthe result of the bitwise OR operation on the argument(s).
Result type. INTEGER or BIGINT

Syntax.

BIN_OR (nunber [, nunber ...])

I mportant

If the external function Bl N_ORisdeclared in your database, it will override the internal
function. To maketheinternal function available, DROP or ALTER theexternal function

(UDF).
BIN_SHL()

Availablein. DSQL, PSQL
Addedin. 2.1

Description. Returns the first argument bitwise left-shifted by the second argument, i.e. a << b
or a-2"b.

Result type. BIGINT
Syntax.

BI N SHL (nunber, shift)

BIN_SHR()

Availablein. DSQL, PSQL
Addedin. 2.1

Description. Returns the first argument bitwise right-shifted by the second argument, i.e. a >>
b or a/2"b.

Result type. BIGINT
Syntax.
Bl N_SHR (numnber, shift)

» Theoperation performed is an arithmetic right shift (SAR), meaning that the sign
of the first operand is always preserved.

85

Built-in functions and variables

BIN_XOR()

Availablein. DSQL, PSQL

Addedin. 21

Description. Returnsthe result of the bitwise XOR operation on the argument(s).
Result type. INTEGER or BIGINT

Syntax.
Bl N XOR (nunber [, nunber ...])

I mportant

If the external function BI N_XOR is declared in your database, it will override the
internal function. To maketheinternal function available, DROP or ALTER the external
function (UDF).

BIT_LENGTH()

Availablein. DSQL, PSQL
Addedin. 20
Changedin. 2.1

Description. Givesthe length in bits of the input string. For multi-byte character sets, this may be
less than the number of characters times 8 times the “formal” number of bytes per character as found
in RDB$CHARACTER_SETS.

@ Note
With arguments of type CHAR, this function takes the entire formal string length (e.g.
the declared length of afield or variable) into account. If you want to obtain the “logical”
bit length, not counting the trailing spaces, right-TRIM the argument before passing it
to BIT_LENGTH.

Result type. INTEGER
Syntax.
Bl T_LENGTH (str)

BLOB support. Since Firebird 2.1, this function fully supports text BLOBs of any length and
character set.

Examples.

select bit_length('Hello!') fromrdb$dat abase
-- returns 48

select bit_length(_iso08859 1 'GuR di!"') fromrdb$dat abase
-- returns 64: U and B take up one byte each in |S08859 1

select bit _length
(cast (_iso08859 1 'GuR di!' as varchar(24) character set utf8))
from rdb$dat abase
-- returns 80: 0 and B take up two bytes each in UTF8

86

Built-in functions and variables

select bit_length

(cast (_iso08859 1 'GuR di!" as char(24) character set utf8))
from r db$dat abase

-- returns 208: all 24 CHAR positions count, and two of themare 16-bit

Seealso. OCTET_LENGTH(), CHARACTER_LENGTH()

CAST()

Availablein. DSQL, ESQL, PSQL
Addedin. IB
Changedin. 20,21,25

Description. CAST converts an expression to the desired datatype or domain. If the conversion
isnot possible, an error israised.

Result type. User-chosen.

Syntax.

CAST (expression AS <target_type>)

<target type> ::= sgl_datatype
| [TYPE OF] domain
| TYPE OF COLUW rel namne. col namne

Shorthand syntax.

Alternative syntax, supported only when casting a string literal to a DATE, TIME
or TIMESTAMP:

dat at ype 'date/tinestring'

This syntax was already availablein InterBase, but was never properly documented.
Please notice: The shorthand syntax isevaluated immediately at parsetime, causing
thevalueto stay the same until the statement isunprepared. For datetimeliteralslike
'12- Cct-2012" this doesn't make any difference. But for the pseudo-variables
" NOW ,' YESTERDAY' ,' TODAY' and' TOMORROW this may not be what you
want. If you need the value to be evaluated at every call, use CAST().

Examples.
A full-syntax cast:
select cast ('12' || '-June-' || '1959' as date) fromrdb$database
A shorthand string-to-date cast:

updat e People set AgeCat = 'Ad'
where BirthDate < date '1-Jan-1943'

Notice that you can drop even the shorthand cast from the example above, as the
engine will understand from the context (comparison to a DATE field) how to
interpret the string:

update People set AgeCat = 'Ad
where BirthDate < '1-Jan-1943

But this is not always possible. The cast below cannot be dropped, otherwise the
engine would find itself with an integer to be subtracted from a string:

87

Built-in functions and variables

sel ect date 'today' - 7 from rdb$dat abase

The following table shows the type conversions possible with CAST.

Table7.1. Possible CASTs

From To

Numeric types Numeric types
[VAR]CHAR
BLOB

[VAR]CHAR [VAR]CHAR
BLOB BLOB
Numeric types
DATE
TIME
TIMESTAMP

DATE [VAR]CHAR
TIME BLOB
TIMESTAMP

TIMESTAMP [VAR]CHAR
BLOB
DATE
TIME

Keep in mind that sometimes information is lost, for instance when you cast a TIMESTAMP
to a DATE. Also, the fact that types are CAST-compatible is in itself no guarantee that a
conversion will succeed. “ CAST (123456789 as SMALLINT)” will definitely resultin an error, aswill
“CAST ("Judgement Day' as DATE)".

Castinginput fields. Since Firebird 2.0, you can cast statement parameters to a datatype:
cast (? as integer)

Thisgivesyou control over thetypeof input field set up by the engine. Please notice that with statement
parameters, you always need a full-syntax cast — shorthand casts are not supported.

Casting to a domain or itstype. Firebird 2.1 and above support casting to a domain or its base
type. When casting to adomain, any constraints (NOT NUL L and/or CHECK) declared for the domain
must be satisfied or the cast will fail. Please be aware that a CHECK passesif it evaluates to TRUE
or NULL! So, given the following statements:

create domain quint as int check (val ue >= 5000)

sel ect cast (2000 as quint) fromrdb$dat abase -- (1)
sel ect cast (8000 as quint) fromrdb$dat abase -- (2)
sel ect cast (null as quint) fromrdb$dat abase -- (3)

only cast number (1) will result in an error.

When the TY PE OF modifier is used, the expression is cast to the base type of the domain, ignoring
any constraints. With domain quint defined as above, the following two casts are equivalent and will
both succeed:

sel ect cast (2000 as type of quint) fromrdb$dat abase
sel ect cast (2000 as int) from rdb$dat abase

If TYPE OF is used with a (VAR)CHAR type, its character set and collation are retained:

create domain iso020 varchar(20) character set iso08859 1;

88

Built-in functions and variables

create domai n dunl 20 varchar(20) character set is08859 1 collate du_nl;
create table zinnen (zin varchar(20));

commi t;

insert into zinnen values (' Deze');

insert into zinnen values ('Die');

insert into zinnen values ('die');

insert into zinnen values ('deze');

sel ect cast(zin as type of iso020) from zinnen order by 1;
-- returns Deze -> Die -> deze -> die

sel ect cast(zin as type of dunl20) from zi nnen order by 1;
-- returns deze -> Deze -> die -> Die

@ Warning
If a domain's definition is changed, existing CASTs to that domain or its type may
become invalid. If these CASTs occur in PSQL modules, their invalidation may be
detected. See the note The RDB$VALID_BLR field, near the end of this document.

Casting to a column'stype. In Firebird 2.5 and above, it is possible to cast expressions to the
type of an existing table or view column. Only the type itself is used; in the case of string types, this
includes the character set but not the collation. Constraints and default values of the source column
are not applied.

create table ttt (
s varchar (40) character set utf8 collate unicode_ci _ai

);

comm t;

sel ect cast ('Jag har manga vanner' as type of colum ttt.s) from rdb$d.

N Warnings
 For text types, character set and collation are preserved by the cast — just as when

casting to a domain. However, due to a bug, the collation is not aways taken into
consideration when comparisons (e.g. equality tests) are made. In cases where the
collation is of importance, test your code thoroughly before deploying! This bug is
fixed for Firebird 3.

 If acolumn's definition is altered, existing CASTsto that column's type may become
invalid. If these CASTs occur in PSQL modules, their invalidation may be detected.
See the note The RDB$VALID_BLR field, near the end of this document.

Casting BLOBs. Successful casting to and from BLOBs is possible since Firebird 2.1.

CEIL(), CEILING()
Availablein. DSQL, PSQL
Addedin. 21
Description. Returns the smallest whole number greater than or equal to the argument.
Result type. BIGINT or DOUBLE PRECISION
Syntax.

CEIL[ING (number)

89

Built-in functions and variables

I mportant

. If the external function CEIl LI NG is declared in your database, it will override the
internal function CEILING (but not CEIL). To make the internal function available,
DROP or ALTER the external function (UDF).

Seealso. FLOOR()

CHAR_LENGTH(), CHARACTER_LENGTH()
Availablein. DSQL, PSQL
Addedin. 2.0
Changedin. 21

Description. Givesthe length in characters of the input string.

@ Note
With arguments of type CHAR, this function returns the formal string length (i.e.
the declared length of a field or variable). If you want to obtain the “logical”
length, not counting the trailing spaces, right-TRIM the argument before passing it to
CHAR[ACTER]_LENGTH.

Result type. INTEGER
Syntax.

CHAR LENGTH (str)
CHARACTER _LENGTH (str)

BLOB support. Since Firebird 2.1, this function fully supports text BLOBs of any length and
character set.

Examples.

sel ect char_length('Hello!') from rdb$dat abase
-- returns 6

sel ect char _length(_is08859 1 'G iR di!"') from rdb$dat abase
-- returns 8

select char_length
(cast (_is08859_1 'GuBR di!' as varchar(24) character set utf8))
from r db$dat abase
-- returns 8; the fact that U and B take up two bytes each is irrel evant

sel ect char_length

(cast (_is08859 1 "G uR di!" as char(24) character set utf8))
from r db$dat abase
-- returns 24: all 24 CHAR positions count

Seealso. BIT_LENGTH(), OCTET_LENGTH()

CHAR_TO_UUID()

Availablein. DSQL, PSQL
Addedin. 25

90

Built-in functions and variables

Description. Convertsahuman-readable 36-char UUID string to the corresponding 16-byte UUID.
Result type. CHAR(16) CHARACTER SET OCTETS
Syntax.
CHAR _TO UUI D (ascii _uuid)
ascii_uuid ::= a string of length 36 wth:
* '-' (hyphen) at positions 9, 14, 19 and 24;

* valid hex digits at every other position.

Examples.

sel ect char _to_uui d(' AObF4E45-3029- 2a44- D493- 4998c9b439A3') from r db$dat al
-- returns AOBF4E4530292A44D4934998C9B439A3 (16-byte string)

sel ect char _to_uui d(' AObF4E45- 3029- 2A44- X493- 4998c9h439A3') from rdb$da
-- error: -Human readabl e UUI D argunent for CHAR TO UUI D nust
-- have hex digit at position 20 instead of "X (ASCI I 88)"

Seealso. UUID_TO _CHAR(), GEN_UUID()

COALESCE()

Availablein. DSQL, PSQL
Addedin. 15

Description. The COALESCE function takes two or more arguments and returns the value of the
first non-NULL argument. If all the arguments evaluate to NULL, the result is NULL.

Result type. Depends on input.

Syntax.
COALESCE (<expl>, <exp2> [, <expN> ...])
Example.

sel ect
coal esce (N cknanme, FirstNanme, "M./Ms.') || ' ' || LastNane
as Ful | Nane
from Persons

This example picks the Nickname from the Persons table. If it happens to be NULL, it goes on to
FirstName. If that too isNULL, “Mr./Mrs.” isused. Finaly, it adds the family name. All inal, it tries
to use the available datato compose afull namethat isasinformal as possible. Notice that this scheme
only works if absent nicknames and first names are really NULL: if one of them is an empty string
instead, COALESCE will happily return that to the caller.

@ Note
In Firebird 1.0.x, where COALESCE is not available, you can accomplish the samewith
the* nvl external functions.

COS()

Availablein. DSQL, PSQL

91

Built-in functions and variables

Addedin. 21
Description. Returns an angle's cosine. The argument must be given in radians.
Result type. DOUBLE PRECISION
Syntax.
COs (angl e)
* Any non-NULL result is— obvioudly —in therange [-1, 1].

I mportant

If the external function COS is declared in your database, it will override the internal
function. To maketheinternal function available, DROP or AL TER theexternal function
(UDF).

COSH()

COT()

Availablein. DSQL, PSQL
Addedin. 21
Description. Returnsthe hyperbolic cosine of the argument.
Result type. DOUBLE PRECISION
Syntax.
COSH (number)

* Any non-NULL resultisin the range [1, INF].
I I mpor tant

If the external function COSH is declared in your database, it will override the internal
function. To maketheinternal function available, DROP or AL TER the external function
(UDF).

Availablein. DSQL, PSQL
Addedin. 21
Description. Returns an angle's cotangent. The argument must be given in radians.
Result type. DOUBLE PRECISION
Syntax.
COT (angl e)
| I mportant

If the external function COT is declared in your database, it will override the internal
function. To maketheinternal function available, DROP or ALTER theexternal function

(UDF).

92

Built-in functions and variables

DATEADD()

Availablein. DSQL, PSQL
Addedin. 21
Changedin. 25

Description. Adds the specified number of years, months, weeks, days, hours, minutes, seconds
or milliseconds to a date/time value. (The WEEK unitisnew in 2.5.)

Result type. DATE, TIME or TIMESTAMP
Syntax.
DATEADD (<ar gs>)

<ar gs> .= <anmpount> <unit> TO <dateti ne>
| <unit> <anount>, <datetine>

<anount > = an integer expression (negative to subtract)
<uni t > = YEAR | MONTH | WVEEK | DAY

| HOUR | MNUTE | SECOND | M LLI SECOND
<datetine> ::= a DATE, TIME or TIMESTAMP expression

* Theresult typeis determined by the third argument.

* WithTIMESTAMPand DATE arguments, al unitscan be used. (Prior to Firebird
2.5, units smaller than DAY were disallowed for DATES.)

¢ With TIME arguments, only HOUR, MINUTE, SECOND and MILLISECOND
can be used.

Examples.

dat eadd (28 day to current_date)
dateadd (-6 hour to current_tine)
dat eadd (nonth, 9, DateOf Concepti on)
dat eadd (-38 week to DateO Birth)
dateadd (minute, 90, tine 'now)
dateadd (? year to date '11-Sep-1973')

DATEDIFF()

Availablein. DSQL, PSQL
Addedin. 2.1
Changedin. 25

Description. Returns the number of years, months, weeks, days, hours, minutes, seconds or
milliseconds el apsed between two date/time values. (The WEEK unitisnew in 2.5.)

Result type. BIGINT
Syntax.

DATEDI FF (<ar gs>)

<ar gs> ;.= <unit> FROM <norent 1> TO <nonent 2>

93

Built-in functions and variables

| <unit>, <nonentl> <nonent2>

<uni t > 1= YEAR | MONTH | WEEK | DAY
| HOUR | MNUTE | SECOND | M LLI SECOND
<monment N> ::= a DATE, TIME or TI MESTAMP expression

 DATE and TIMESTAMP arguments can be combined. No other mixes are
alowed.

* WithTIMESTAMPand DATE arguments, all unitscan beused. (Prior to Firebird
2.5, units smaller than DAY were disallowed for DATES.)

* With TIME arguments, only HOUR, MINUTE, SECOND and MILLISECOND
can be used.

Computation.

» DATEDIFF doesn't look at any smaller unitsthan the one specified in thefirst argument. Asaresult,
e “datedi ff (year, date '1-Jan-2009', date ' 31-Dec-2009') " returnsO, but
e “datedi ff (year, date '31-Dec-2009', date '1-Jan-2010")" returnsl

* It does, however, look at all the bigger units. So:
o “datedi ff (day, date '26-Jun-1908', date '11-Sep-1973") " returns23818

* A negative result value indicates that monent 2 lies before norment 1.
Examples.

datedi ff (hour fromcurrent_tinestanp to tinmestanmp '12-Jun-2059 06: 00')
datediff (minute fromtime '0:00" to current_time)
datedi ff (nonth, current_date, date '1-1-1900')
datedi ff (day fromcurrent_date to cast(? as date))

DECODE()

Availablein. DSQL, PSQL
Addedin. 2.1

Description. DECODE is a shortcut for the so-caled “ssimple CASE” construct, in which a
given expression is compared to a number of other expressions until a match is found. The result is
determined by the value listed after the matching expression. If no match is found, the default result
isreturned, if present. Otherwise, NULL is returned.

Result type. Varies
Syntax.
DECODE (<test-expr>,
<expr>, result

[, <expr>, result ...]
[, defaultresult])

The equivalent CASE construct:

CASE <t est - expr>
WHEN <expr> THEN resul t

[WHEN <expr> THEN result ...]
[ELSE defaul tresult]
END

94

Built-in functions and variables

: Caution

- Matching is done with the “=" operator, so if <t est-expr> is
NULL, it won't match any of the <expr >s, not even those that are
NULL.

Example.

sel ect nane,

age,

decode(upper (sex),
"M, 'Mle',
"F', 'Femal e',
" Unknown'),

religion

from peopl e

Seealso. CASE, Simple CASE

EXP()

Availablein. DSQL, PSQL
Addedin. 21

Description. Returns the natural exponential, €"!™®"

Result type. DOUBLE PRECISION
Syntax.

EXP (nunber)
Seealso. LN()

EXTRACT()

Availablein. DSQL, ESQL, PSQL
Addedin. IB6
Changedin. 2.1

Description. Extracts and returns an element from aDATE, TIME or TIMESTAMP expression.
This function was already added in InterBase 6, but not documented in the Language Reference at
thetime.

Result type. SMALLINT or NUMERIC
Syntax.

EXTRACT (<part> FROM <dat eti ne>)

<part> ::= YEAR | MONTH | WVEEK

| DAY | WEEKDAY | YEARDAY

| HOUR | MNUTE | SECOND | M LLI SECOND
<datetine> ::= a DATE, TIME or TIMESTAMP expression

The returned data types and possible ranges are shown in the table below. If you try to extract a part
that isn't present in the date/time argument (e.g. SECOND from a DATE or YEAR from a TIME),
an error occurs.

95

Built-in functions and variables

Table 7.2. Typesand ranges of EXTRACT results

Part Type Range Comment

YEAR SMALLINT 1-9999

MONTH SMALLINT 1-12

WEEK SMALLINT 1-53

DAY SMALLINT 1-31

WEEKDAY SMALLINT 0-6 0 = Sunday

YEARDAY SMALLINT 0-365 0 =January 1

HOUR SMALLINT 0-23

MINUTE SMALLINT 0-59

SECOND NUMERIC(9,4) 0.0000-59.9999 includes millisecond as

fraction

MILLISECOND NUMERIC(9,1) 0.0-999.9 brokenin2.1,2.1.1
MILLISECOND

Added in. 2.1 (with bug)

Fixedin. 212

Description. Firebird 2.1 and up support extraction of the millisecond from a TIME or

TIMESTAMP. The datatype returned is NUMERIC(9,1).

&

WEEK

Added in.

Description.

Note
If you extract the millisecond from CURRENT_TIME, be aware that this variable

defaults to seconds precision, so the result will aways be 0. Extract from
CURRENT_TIME(3) or CURRENT_TIMESTAMP to get milliseconds precision.

21

Firebird 2.1 and up support extraction of the |SO-8601 week number from a DATE

or TIMESTAMP. 1SO-8601 weeks start on a Monday and always have the full seven days. Week 1
is the first week that has a majority (at least 4) of its days in the new year. The first 1-3 days of the
year may belong to the last week (52 or 53) of the previous year. Likewise, a year's fina 1-3 days
may belong to week 1 of the following year.

FLOOR()

Availablein.

Caution

Be careful when combining WEEK and Y EAR results. For instance, 30 December 2008
liesin week 1 of 2009, so “extract (week from date '30 Dec 2008')”
returns 1. However, extracting Y EAR aways gives the calendar year, which is 2008. In
this case, WEEK and YEAR are at odds with each other. The same happens when the
first days of January belong to the last week of the previous year.

Please a so notice that WEEKDAY is not 1SO-8601 compliant: it returns O for Sunday,
whereas | SO-8601 specifies 7.

DSQL, PSQL

96

Built-in functions and variables

Addedin. 21
Description. Returnsthe largest whole number smaller than or equal to the argument.
Result type. BIGINT or DOUBLE PRECISION

Syntax.
FLOOR (nunber)

| I mportant

. If the external function FLOOR is declared in your database, it will override the internal
function. To maketheinternal function available, DROP or ALTER theexternal function

(UDF).
Seealso. CEIL()/ CEILING()

GEN_ID()

Availablein. DSQL, ESQL, PSQL
Addedin. IB

Description. Increments a generator or sequence and returns its new value. From Firebird 2.0
onward, the SQL-compliant NEXT VALUE FOR syntax is preferred, except when an increment other
than 1 is needed.

Result type. BIGINT
Syntax.
GEN I D (generator-nane, <step>)
<step> ::= An integer expression.
Example.

new.rec_id = gen_id(gen_recnum 1);

Warning
Unlessyou know very well what you are doing, using GEN_1D() with step values lower
than 1 may compromise your data's integrity.

Seealso. NEXT VALUE FOR, CREATE GENERATOR

GEN_UUID()

Availablein. DSQL, PSQL

Addedin. 21

Description. Returns auniversally unique ID as a 16-byte character string.
Result type. CHAR(16) CHARACTER SET OCTETS

Syntax.
GEN_UUI D ()

97

Built-in functions and variables

Example.

sel ect gen_uuid() from rdb$dat abase
-- returns e.g. 017347BFE212B2479C00FA4323B36320 (16-byte string)

Seealso. UUID_TO_CHAR(), CHAR TO_UUID()

HASH()

Availablein. DSQL, PSQL
Addedin. 21

Description. Returns a hash value for the input string. This function fully supports text BLOBs
of any length and character set.

Result type. BIGINT

Syntax.
HASH (string)

IIF()

Availablein. DSQL, PSQL
Addedin. 2.0

Description. |IF takes three arguments. If the first evaluates to t r ue, the second argument is
returned; otherwise the third is returned.

Result type. Depends on input.

Syntax.
I1'F (<condition> ResultT, ResultF)
<condition> ::= A bool ean expression.
Example.
select iif(sex ="M, "Sir', "Madam) from Custoners

[IF(Cond, Resul t 1, Resul t 2) is a shortcut for “CASE WHEN Cond THEN Resul t 1 ELSE
Resul t 2 END”. You can also compare | IF to the ternary “? : ” operator in C-like languages.

LEFT()
Availablein. DSQL, PSQL
Addedin. 2.1

Description. Returns the leftmost part of the argument string. The number of charactersis given
in the second argument.

Result type. VARCHAR or BLOB

Syntax.
LEFT (string, |ength)

98

Built-in functions and variables

 This function fully supports text BLOBs of any length, including those with a
multi-byte character set.

e If string is a BLOB, the result is a BLOB. Otherwise, the result is a
VARCHAR(N) with n the length of the input string.

 If thel engt h argument exceeds the string length, the input string is returned
unchanged.

 If thel engt h argument is not a whole number, bankers' rounding (round-to-
even) is applied, i.e. 0.5 becomes 0, 1.5 becomes 2, 2.5 becomes 2, 3.5 becomes
4, etc.

Seealso. RIGHT()

LNQ

Availablein. DSQL, PSQL
Addedin. 21
Description. Returnsthe natural logarithm of the argument.
Result type. DOUBLE PRECISION
Syntax.
LN (nunber)

» Anerrorisraised if the argument is negative or 0.

I I mportant

. If the external function LN is declared in your database, it will override the internal
function. To maketheinternal function available, DROP or AL TER the external function
(UDF).

Seealso. EXP()

LOG()

Availablein. DSQL, PSQL
Addedin. 21
Changedin. 25
Description. Returns the x-based logarithm of y.
Result type. DOUBLE PRECISION
Syntax.
LOG (x,)

* If either argument is 0 or below, an error israised. (Before 2.5, thiswould result
in NaN, 1 NF or 0, depending on the exact values of the arguments.)

* If both arguments are 1, NaN is returned.

e Ifx =1andy <1, -l NF isreturned.

99

Built-in functions and variables

e Ifx=1andy > 1, | NFisreturned.

| I mportant

If the external function LOG is declared in your database, it will override the internal
function. To maketheinternal function available, DROP or AL TER the external function

(UDF).
LOG10()

Availablein. DSQL, PSQL
Addedin. 21
Changedin. 25
Description. Returns the 10-based logarithm of the argument.
Result type. DOUBLE PRECISION
Syntax.
LOGLO (nunber)

» Anerrorisraised if the argument is negative or 0. (In versions prior to 2.5, such
values would result in NaN and -1 NF, respectively.)

I I mportant

If the external function LOGLO isdeclared in your database, it will override the internal
function. To maketheinternal function available, DROP or AL TER the external function
(UDF).

LOWER()
Availablein. DSQL, ESQL, PSQL
Addedin. 2.0
Changed in. 2.1

Description. Returns the lower-case equivalent of the input string. The exact result depends on
the character set. With ASCIl or NONE for instance, only ASCII characters are lowercased; with
OCTETS, the entire string is returned unchanged. Since Firebird 2.1 this function also fully supports
text BLOBs of any length and character set.

Result type. (VAR)CHAR or BLOB
Syntax.

LOAER (str)

@ Note
Because LOWER is areserved word, the internal function will take precedence even if
the external function by that name has also been declared. To call the (inferior!) external
function, use double-quotes and the exact capitalisation, asin " LOAER' (st r).

Example.

100

Built-in functions and variables

sel ect Sheriff from Towns
where | ower (Name) = 'cooper''s valley'

Seealso. UPPER

LPAD()
Availablein. DSQL, PSQL
Addedin. 21
Changed in. 2.5 (backported to 2.1.4)

Description. Left-pads a string with spaces or with a user-supplied string until a given length is
reached.

Result type. VARCHAR or BLOB
Syntax.
LPAD (str, endlen [, padstr])
 Thisfunction fully supports text BLOBs of any length and character set.

e |If str is a BLOB, the result is a BLOB. Otherwise, the result is a
VARCHAR(endl en).

e If padstr isgivenand equals' ' (empty string), no padding takes place.

» Ifendl enislessthanthecurrent string length, thestring istruncatedtoendl| en,
even if padst r isthe empty string.

I Im por tant

. If the external function LPAD is declared in your database, it will override the internal
function. To maketheinternal function available, DROP or ALTER theexternal function
(UDF).

@ Note
In Firebird 2.1-2.1.3, al non-BLOB results were of type VARCHAR(32765), which
made it advisable to cast them to a more modest size. Thisis no longer the case.

Examples.
| pad ('Hello', 12) -- returns ' Hel | o'

I pad ("Hello', 12, '-") -- returns '------- Hel | o'
I pad ("Hello', 12, '") -- returns 'Hello

I pad ("Hello', 12, "abc') -- returns 'abcabcaHel | o'
I pad ('Hello', 12, 'abcdefghij') -- returns 'abcdefgHell o'
I pad ("Hello', 2) -- returns 'He'

Ipad ("Hello', 2, '-") -- returns 'He'

Ipad ("Hello', 2, '") -- returns 'He'

Warning

When used on a BLOB, this function may need to load the entire object into memory.
Although it does try to limit memory consumption, this may affect performance if huge
BLOBsareinvolved.

Seealso. RPAD()

101

Built-in functions and variables

MAXVALUE()

Availablein. DSQL, PSQL
Addedin. 2.1

Description. Returnsthe maximum valuefrom alist of numerical, string, or date/time expressions.
This function fully supports text BLOBSs of any length and character set.

Result type. Varies
Syntax.
MAXVALUE (expr [, expr ...])

* If one or more expressions resolve to NULL, MAXVALUE returns NULL. This
behaviour differs from the aggregate function MAX.

Seealso. MINVALUE()

MINVALUE()

Availablein. DSQL, PSQL
Addedin. 21

Description. Returnsthe minimum value from alist of numerical, string, or date/time expressions.
This function fully supports text BLOBs of any length and character set.

Result type. Varies
Syntax.
M NVALUE (expr [, expr ...])

* If one or more expressions resolve to NULL, MINVALUE returns NULL. This
behaviour differs from the aggregate function MIN.

Seealso. MAXVALUE()

MOD()

Availablein. DSQL, PSQL
Addedin. 21
Description. Returns the remainder of an integer division.
Result type. INTEGER or BIGINT
Syntax.
MOD (a, b)

» Non-integer arguments are rounded before the division takes place. So, “7.5 mod
2.5" gives 2 (8 mod 3), not 0.

I I mportant

. If the external function MOD is declared in your database, it will override the internal
function. To maketheinternal function available, DROP or AL TER the external function
(UDF).

102

Built-in functions and variables

NULLIF()

Availablein. DSQL, PSQL
Addedin. 15

Description. NULLIF returns the value of the first argument, unless it is equal to the second. In
that case, NULL isreturned.

Result type. Depends on input.
Syntax.
NULLI F (<expl>, <exp2>)
Example.
sel ect avg(nullif(Weight, -1)) from Fat Peopl e
Thiswill return the average weight of the personslisted in FatPeople, excluding those having aweight

of -1, since AVG skips NULL data. Presumably, -1 indicates “weight unknown” in thistable. A plain
AV G(Weight) would include the -1 weights, thus skewing the result.

@ Note
In Firebird 1.0.x, where NULLIF is not available, you can accomplish the same with the
*nul |'i f externa functions.

OCTET_LENGTH()
Availablein. DSQL, PSQL
Addedin. 20
Changedin. 2.1

Description. Gives the length in bytes (octets) of the input string. For multi-byte character sets,
this may be less than the number of characters times the “formal” number of bytes per character as
found in RDB$CHARACTER_SETS.

@ Note
With arguments of type CHAR, this function takes the entire formal string length (e.g.
the declared length of afield or variabl€) into account. If you want to obtain the“logical”
byte length, not counting the trailing spaces, right-TRIM the argument before passing
itto OCTET_LENGTH.

Result type. INTEGER
Syntax.
OCTET_LENGTH (str)

BLOB support. Since Firebird 2.1, this function fully supports text BLOBs of any length and
character set.

Examples.

sel ect octet_length('Hello!') fromrdb$dat abase
-- returns 6

103

Built-in functions and variables

sel ect octet_length(_iso8859 1 'GdaR di!') fromrdb$dat abase
-- returns 8: U and B take up one byte each in |1S08859_1

sel ect octet_length
(cast (_iso08859 1 'GuR di!' as varchar(24) character set utf8))
from rdb$dat abase
-- returns 10: 0 and B take up two bytes each in UTF8

sel ect octet_length

(cast (_iso08859 1 'GuR di!" as char(24) character set utf8))
from rdb$dat abase

-- returns 26: all 24 CHAR positions count, and two of themare 2-byte

Seealso. BIT_LENGTH(), CHARACTER_LENGTH()

OVERLAY()

Availablein. DSQL, PSQL
Addedin. 2.1

Description. Overwrites part of a string with another string. By default, the number of characters
removed from the host string equals the length of the replacement string. With the optional fourth
argument, the user can specify a different number of charactersto be removed.

Result type. VARCHAR or BLOB

Syntax.
OVERLAY (string PLACING repl acement FROM pos [FOR | ength])
 Thisfunction supports BLOBs of any length.

» If string or repl acenent is aBLOB, the result is a BLOB. Otherwise,
the result is a VARCHAR(Nn) with n the sum of the lengths of st ri ng and
repl acenent.

e Asusual in SQL string functions, pos is 1-based.

» If pos isbeyond the end of stri ng, repl acenent is placed directly after
string.

« If the number of charactersfrom pos totheend of st ri ng issmaller than the
length of r epl acenment (or than thel engt h argument, if present), st ri ng
istruncated at pos and r epl acenent placed after it.

» The effect of a“FOR 0" clause is that r epl acenent issimply inserted into
string.

* If any argument is NULL, the result is NULL.

» If pos or | engt h isnot awhole number, bankers' rounding (round-to-even) is
applied, i.e. 0.5 becomes 0, 1.5 becomes 2, 2.5 becomes 2, 3.5 becomes 4, etc.

Examples.
overlay (' Goodbye' placing 'Hello' from 2) -- returns ' GHel | oe'
overlay (' Goodbye' placing 'Hello' fromb5) -- returns ' GoodHel | o'
overlay (' Goodbye' placing 'Hello'" from 8) -- returns ' GoodbyeHel | o'
overlay (' Goodbye' placing 'Hello' from 20) -- returns ' GoodbyeHel | o'
overlay (' Goodbye' placing 'Hello' from2 for 0) -- r. 'GHel |l ooodbye'

104

Built-in functions and variables

overl ay
overl ay
overl ay

overl ay
overl ay
overl ay

overl ay
overl ay
overl ay

(' Goodbye' pl acing
(' Goodbye' pl acing
(' Goodbye' pl acing

(' Goodbye' pl acing
(' Goodbye' pl acing
(' Goodbye' pl acing

(
("
("

pl aci ng ' Hell o'
pl aci ng ' Hell o'
pl aci ng ' Hell o'

Hell o' from2 for 3)
Hell o' from2 for 6)
Hell o' from2 for 9)
" from4) --
" from4 for 3) --
' from4 for 20) --

from4) --
from4 for 0) --
from4 for 20) --

This may affect performance if huge BLOBs are involved.

Seealso. REPLACE()

PI1()

Availablein. DSQL, PSQL

Addedin. 21

Description. Returns an approximation of the value of #.

Result type. DOUBLE PRECISION

-- r. 'Glell obye’
--r. "GHello'
--r. "GHello'

returns ' Goodbye’
returns ' Gooe'
returns ' Goo'

returns 'Hell o'
returns 'Hell o'
returns 'Hell o'

Warning
When used on a BLOB, this function may need to load the entire object into memory.

Syntax.
Pl ()
| I mportant
. If the external function Pl is declared in your database, it will override the internal

function. To maketheinternal function available, DROP or ALTER theexternal function

(UDF).
POSITION()

Availablein. DSQL, PSQL

Addedin. 21

Description. Returns the (1-based) position of the first occurrence of a substring in a host string.
With the optional third argument, the search starts at a given offset, disregarding any matches that
may occur earlier in the string. If no match isfound, the result is 0.

Result type. INTEGER

Syntax.

PCOSI TI ON (<ar gs>)

<ar gs>

substr,

substr IN string

string [,

start pos]

» The optional third argument is only supported in the second syntax (comma

syntax).

105

Built-in functions and variables

e Theempty string is considered a substring of every string. Therefore, if subst r
is" (empty string) and st ri ng isnot NULL, theresultis:
e lifstartpos isnotgiven;
e startposifstartpos lieswithinstri ng;
e Oif startpos liesheyondtheend of st ri ng.

Notice: A bug in Firebird 2.1-2.1.3 and 2.5 causes POSITION to always return
lif substr isthe empty string. Thisisfixedin2.1.4 and 2.5.1.

 Thisfunction fully supportstext BLOBs of any size and character set.

Examples.
position ('be" in 'To be or not to be') -- returns 4
position ('be', 'To be or not to be') -- returns 4
position ('be', '"To be or not to be', 4) -- returns 4
position ('be', '"To be or not to be', 8) -- returns 17
position ('be', "To be or not to be', 18) -- returns O
position ('be" in 'Alas, poor Yorick!") -- returns O

Warning
When used on a BLOB, this function may need to load the entire object into memory.
This may affect performance if huge BLOBs are involved.

POWER()
Availablein. DSQL, PSQL
Addedin. 21
Description. Returnsx to they'th power.
Result type. DOUBLE PRECISION
Syntax.
PONER (X, V)

* If X negative, an error israised.

| I mportant

. If the externa function POAER is declared in your database as power instead of the
default dPower , it will override the internal function. To make the internal function
available, DROP or ALTER the external function (UDF).

RAND()

Availablein. DSQL, PSQL

Addedin. 21

Description. Returns arandom number between 0 and 1.
Result type. DOUBLE PRECISION

Syntax.

RAND ()

106

Built-in functions and variables

I Im por tant

. If the external function RAND is declared in your database, it will override the internal
function. To maketheinternal function available, DROP or ALTER theexternal function
(UDF).

RDB$GET_CONTEXT()

@ Note
RDB$GET_CONTEXT and its counterpart RDB$SET_CONTEXT are actualy
predeclared UDFs. They are listed here as internal functions because they are always
present — the user doesn't have to do anything to make them available.

Availablein. DSQL, ESQL, PSQL
Addedin. 20
Changedin. 2.1

Description. Retrieves the value of a context variable from one of the namespaces SY STEM,
USER SESSION and USER_ TRANSACTION.

Result type. VARCHAR(255)
Syntax.
RDB$GET_CONTEXT (' <namespace>', '<varnane>')

SYSTEM | USER_SESSI ON | USER_TRANSACTI ON
A case-sensitive string of max. 80 characters

<namespace>
<var nane>

The namespaces. The USER_SESSION and USER_TRANSACTION namespaces are initialy
empty. The user can create and set variables in them with RDB$SET_CONTEXT() and retrieve
them with RDB$GET_CONTEXT(). The SY STEM namespace is read-only. It contains a number of
predefined variables, shown in the table below.

Table 7.3. Context variablesin the SY STEM namespace

DB_NAME Either the full path to the database or — if connecting via the path is
disallowed —its dlias.

NETWORK _PROTOCOL | The protocol used for the connection: * TCPv4' |, " WNET' , * XNET' or
NULL.

CLI ENT_ADDRESS |For TCPv4, thisisthe IP address. For XNET, the local process ID. For all
other protocols this variable is NULL.

CURRENT_USER Same as global CURRENT_USER variable.
CURRENT_ROLE Same as global CURRENT_ROLE variable.
SESSION_I D Same as global CURRENT_CONNECTI ON variable.

TRANSACTI ON_| D |Sameas global CURRENT _TRANSACTI ON variable.

| SOLATI ON_LEVEL |The isolation level of the current transaction: ' READ COVMM TTED
" SNAPSHOT" or' CONSI STENCY' .

ENG NE_VERSI ON | The Firebird engine (server) version. Added in 2.1.

Return valuesand error behaviour. If the polled variable existsin the given namespace, itsvalue
will be returned as a string of max. 255 characters. If the namespace doesn't exist or if you try to
accessanon-existing variablein the SY STEM namespace, an error israised. If you poll anon-existing

107

Built-in functions and variables

variablein one of the other namespaces, NULL is returned. Both namespace and variable names must
be given as single-quoted, case-sensitive, non-NULL strings.

Examples.
sel ect rdb$get _context (' SYSTEM, 'DB_NAME) from rdb$dat abase
New. User Addr = rdb$get context (' SYSTEM, ' CLI ENT_ADDRESS');

insert into MyTabl e (TestFi el d)
val ues (rdb$get _context (' USER_SESSION' , 'M/Var'))

Seealso. RDBS$SET_CONTEXT()

RDB$SET_CONTEXT()

@ Note
RDB$SET_CONTEXT and its counterpart RDB$GET_CONTEXT are actualy
predeclared UDFs. They are listed here as internal functions because they are always
present — the user doesn't have to do anything to make them available.

Availablein. DSQL, ESQL, PSQL
Addedin. 2.0

Description. Creates, sets or unsets a variable in one of the user-writable namespaces
USER_SESSION and USER_TRANSACTION.

Result type. INTEGER

Syntax.
RDB$SET_CONTEXT (' <namespace>', '<varname>', <value> | NULL)

<nanmespace> = USER SESSI ON | USER_TRANSACTI ON
<var nane> = A case-sensitive string of max. 80 characters
<val ue> = A value of any type, as long as it's castable

to a VARCHAR(255)

The namespaces. The USER_SESSION and USER_TRANSACTION namespaces are initially
empty. The user can create and set variables in them with RDB$SSET_CONTEXT() and retrieve them
with RDB$GET_CONTEXT(). The USER_SESSION context is bound to the current connection.
Variablesin USER_TRANSACTION only exist in the transaction in which they have been set. When
the transaction ends, the context and all the variables defined in it are destroyed.

Return valuesand error behaviour. Thefunction returns 1 if the variable already existed before
the call and O if it didn't. To remove avariable from a context, set it to NULL. If the given namespace
doesn't exist, an error israised. Both namespace and variable names must be entered as single-quoted,
case-sensitive, non-NULL strings.

Examples.
sel ect rdb$set context (' USER SESSION , 'M/Var', 493) from rdb$dat abase
rdb$set _context (' USER_SESSI ON', ' RecordsFound', RecCounter);

sel ect rdb$set context (' USER_TRANSACTI ON , ' Savepoints', 'Yes')
from r db$dat abase

Notes.

108

Built-in functions and variables

e The maximum number of variablesin any single context is 1000.

e All USER_TRANSACTION variables will survive a ROLLBACK RETAIN or ROLLBACK TO
SAVEPOINT unaltered, no matter at which point during the transaction they were set.

e Due to its UDF-like nature, RDB$SET_CONTEXT can — in PSQL only — be called like a void
function, without assigning the result, as in the second example above. Regular internal functions
don't allow thistype of use.

Seealso. RDB$GET_CONTEXT()

REPLACE()

Availablein. DSQL, PSQL
Addedin. 21
Description. Replaces all occurrences of a substring in a string.
Result type. VARCHAR or BLOB
Syntax.
REPLACE (str, find, repl)
» Thisfunction fully supportstext BLOBs of any length and character set.

« If any argument is a BLOB, the result is a BLOB. Otherwise, the result is a
VARCHAR(n) with n calculated from the lengths of str, fi nd and r epl
in such a way that even the maximum possible number of replacements won't
overflow thefield.

e Iffi ndistheempty string, st r isreturned unchanged.

e Ifrepl istheempty string, all occurrencesof f i nd are deleted fromstr.

e If any argument isNULL, theresult isalways NULL, even if nothing would have

been replaced.
Examples.

replace ("Billy Wlder', 'il', 'oo0g") -- returns 'Boogly Wogder'
replace ('Billy Wlder', 'il", ") -- returns 'Bly Wer'
replace ('Billy Wlder', null, 'oog") -- returns NULL
replace ("Billy Wlder', "il', null) -- returns NULL
replace ('Billy Wlder', '"xyz', null) -- returns NULL (!)
replace ('Billy Wlder', 'xyz', '"abc') -- returns 'Billy WIder'
replace ('Billy Wlder', "', "abc') -- returns 'Billy WIder'

@ Warning
When used on a BLOB, this function may need to load the entire object into memory.
This may affect performance if huge BLOBs are involved.

Seealso. OVERLAY()

REVERSE()

Availablein. DSQL, PSQL

109

Built-in functions and variables

Addedin. 21
Description. Returns a string backwards.
Result type. VARCHAR
Syntax.
REVERSE (str)
Examples.

reverse ('spoonful') -- returns 'l uf noops'
reverse ('Was it a cat | saw?') -- returns '?was | tac a ti saW

ﬁ_ Tip
Thisfunction comesinvery handy if youwant to group, search or order on string endings,
e.g. when dealing with domain names or email addresses:

create index ix_people_email on people
conputed by (reverse(email));

sel ect * from peopl e
where reverse(email) starting with reverse('.br');

RIGHT()

Availablein. DSQL, PSQL
Addedin. 2.1

Description. Returnsthe rightmost part of the argument string. The number of charactersis given
in the second argument.

Result type. VARCHAR or BLOB

Syntax.
RI GHT (string, |ength)

 Thisfunction supports text BLOBSs of any length, but has abug in versions 2.1—
2.1.3 and 2.5 that makesit fail with text BLOBs larger than 1024 bytes that have
amulti-byte character set. This has been fixed in versions 2.1.4 and 2.5.1.

e If string is a BLOB, the result is a BLOB. Otherwise, the result is a
VARCHAR(N) with n the length of the input string.

 If thel engt h argument exceeds the string length, the input string is returned
unchanged.

 If thel engt h argument is not a whole number, bankers' rounding (round-to-
even) isapplied, i.e. 0.5 becomes 0, 1.5 becomes 2, 2.5 becomes 2, 3.5 becomes
4, etc.

@ Warning
When used on a BLOB, this function may need to load the entire object into memory.
This may affect performance if huge BLOBs are involved.

110

Built-in functions and variables

i I mportant

! If the external function RI GHT is declared in your database asri ght instead of the
default sri ght, it will override the internal function. To make the internal function
available, DROP or ALTER the externa function (UDF).

Seealso. LEFT()

ROUND()

Availablein. DSQL, PSQL
Addedin. 2.1

Description. Roundsanumber to the nearest integer. If thefractional partisexactly 0. 5, rounding
is upward for positive numbers and downward for negative numbers. With the optional scal e
argument, the number can be rounded to powers-of-ten multiples (tens, hundreds, tenths, hundredths,
etc.) instead of just integers.

Result type. INTEGER, (scaled) BIGINT or DOUBLE
Syntax.

ROUND (<nunber> [, <scal e>])

<nunber> ::= a numerical expression
<scal e> ::= an integer specifying the nunber of decinmal places
toward whi ch shoul d be rounded, e.g.

2 for rounding to the nearest nultiple of 0.01

1 for rounding to the nearest multiple of 0.1

0 for rounding to the nearest whol e nunber

-1 for rounding to the nearest nultiple of 10

-2 for rounding to the nearest nultiple of 100

Notes.

 If thescal e argument is present, the result usually has the same scale as the first argument, e.g.
* ROUND(123.654, 1) returns 123.700 (not 123.7)
* ROUND(8341.7, -3) returns 8000.0 (not 8000)
* ROUND(45.1212, 0) returns 45.0000 (not 45)

Otherwise, the result scale is O:
¢ ROUND(45.1212) returns 45

| I mportant

. « If theexternal function ROUNDisdeclared inyour database, it will overridetheinternal
function. To make the internal function available, DROP or ALTER the external
function (UDF).

* If you are used to the behaviour of the external function ROUND, please notice that the
internal function always rounds halves away from zero, i.e. downward for negative
numbers.

RPAD()

Availablein. DSQL, PSQL

Addedin. 21

111

Built-in functions and variables

Changedin. 2.5 (backported to 2.1.4)

Description. Right-pads a string with spaces or with a user-supplied string until a given length

is reached.

Result type. VARCHAR or BLOB

Syntax.

RPAD (str, endlen [, padstr])

This function fully supports text BLOBSs of any length and character set.

If str is a BLOB, the result is a BLOB. Otherwise, the result is a
VARCHAR(endlI en).

If padstr isgivenand equals' ' (empty string), no padding takes place.

If endl enislessthanthecurrent string length, thestring istruncatedtoendl| en,
even if padst r isthe empty string.

I mportant

If the external function RPAD is declared in your database, it will override the internal
function. To maketheinternal function available, DROP or ALTER the external function

(UDF).
Note

In Firebird 2.1-2.1.3, al non-BLOB results were of type VARCHAR(32765), which
made it advisable to cast them to a more modest size. Thisis no longer the case.

Examples.

rpad ('Hello', 12) -- returns 'Hello
rpad ('Hello', 12, '-") -- returns '"Hello------- '
rpad ('Hello', 12, '") -- returns 'Hello
rpad ('Hello', 12, 'abc') -- returns 'Hel |l oabcabca
rpad ('Hello', 12, 'abcdefghij') -- returns ' Hel | oabcdefg
rpad ('Hello', 2) -- returns 'He'
rpad ('Hello', 2, '-") -- returns 'He'
rpad ('Hello', 2, '") -- returns 'He'

N Warning

o

See also.

SIGN()

When used on a BLOB, this function may need to load the entire object into memory.
Although it does try to limit memory consumption, this may affect performance if huge
BLOBsareinvolved.

LPAD()

Availablein. DSQL, PSQL

Added in.

21

Description. Returnsthe sign of the argument: -1, O or 1.

Result type. SMALLINT

112

Built-in functions and variables

Syntax.

SI GN (nunber)

| I mportant

. If the external function SI GN is declared in your database, it will override the internal
function. To maketheinternal function available, DROP or AL TER the external function
(UDF).

SIN()

Availablein. DSQL, PSQL
Added in. 21
Description. Returns an angle's sine. The argument must be given in radians.
Result type. DOUBLE PRECISION
Syntax.
SIN (angl e)

* Any non-NULL result is—obviously —in therange [-1, 1].

I Im por tant

! If the external function SI N is declared in your database, it will override the internal
function. To maketheinternal function available, DROP or ALTER theexternal function
(UDF).

SINH()

Availablein. DSQL, PSQL

Addedin. 21

Description. Returns the hyperbolic sine of the argument.
Result type. DOUBLE PRECISION

Syntax.

SINH (nunber)

I I mportant

. If the external function SI NH is declared in your database, it will override the internal
function. To maketheinternal function available, DROP or ALTER theexternal function
(UDF).

Availablein. DSQL, PSQL
Addedin. 21

Description. Returns the square root of the argument.

113

Built-in functions and variables

Result type. DOUBLE PRECISION

Syntax.
SQRT (numnber)
| I mportant
. If the external function SQRT is declared in your database, it will override the internal
EllJJnlgtiF;)ln. Tomaketheinternal function available, DROP or AL TER theexterna function

SUBSTRING()

Availablein. DSQL, PSQL
Addedin. 1.0
Changedin. 2.0,21,215,25.1

Description. Returnsastring's substring starting at the given position, either to the end of the string
or with agiven length.

Result type. VARCHAR(n) or BLOB
Syntax.
SUBSTRI NG (str FROM startpos [FOR | ength])

This function returns the substring starting at character position st ar t pos (the first position being
1). Without the FOR argument, it returnsall the remaining charactersin the string. With FOR, it returns
| engt h characters or the remainder of the string, whichever is shorter.

In Firebird 1.x, st art pos and | engt h must be integer literals. In 2.0 and above they can be any
valid integer expression.

Starting with Firebird 2.1, this function fully supports binary and text BLOBs of any length and
character set. If st r isaBLOB, the result is also a BLOB. For any other argument type, the result
isaVARCHAR(N). Previously, the result type used to be CHAR(n) if the argument was a CHAR(n)
or astring literal.

For non-BL OB arguments, the width of theresult field isalways equal to thelength of st r , regardless
of startpos and | engt h. So, substri ng(' pi nhead" from 4 for 2) will return a
VARCHAR(7) containing the string ' he' .

If any argument isNULL, theresultis NULL.

@ B .
» If str isaBLOB and thel engt h argument is not present, the output is limited to
32767 characters. Workaround: with long BLOBS, always specify char_length(st r)
— or asufficiently high integer — as the third argument, unless you are sure that the
regquested substring fits within 32767 characters.

This bug has been fixed in version 2.5.1; the fix was also backported to 2.1.5.

* A bug in Firebird 2.0 which caused the function to return “false emptystrings’ if
start pos orl engt h was NULL, has been fixed.

Example.

114

Built-in functions and variables

i nsert into Abbr Nanes(Abbr Nane)
sel ect substring(LongNanme from1 for 3) from LongNanes

Warning

When used on a BLOB, this function may need to load the entire object into memory.
Although it does try to limit memory consumption, this may affect performanceif huge
BLOBs areinvolved.

TAN()

Availablein. DSQL, PSQL
Addedin. 2.1
Description. Returns an angle's tangent. The argument must be given in radians.

Result type. DOUBLE PRECISION

Syntax.
TAN (angl e)
| I mportant
. If the external function TAN is declared in your database, it will override the internal
function. To maketheinternal function available, DROP or AL TER the external function
(UDF).
TANH()

Availablein. DSQL, PSQL
Addedin. 21
Description. Returnsthe hyperbolic tangent of the argument.
Result type. DOUBLE PRECISION
Syntax.
TANH (nunber)

 Due to rounding, any non-NULL result is in the range [-1, 1] (mathematically,

it's<-1, 1>).
| I mportant
. If the external function TANH is declared in your database, it will override the internal
function. To maketheinternal function available, DROP or AL TER theexternal function
(UDF).

TRIM()

Availablein. DSQL, PSQL
Addedin. 2.0

Changedin. 2.1

115

Built-in functions and variables

Description. Removes leading and/or trailing spaces (or optionally other strings) from the input
string. Since Firebird 2.1 this function fully supports text BLOBSs of any length and character set.

Result type. VARCHAR(n) or BLOB
Syntax.

TRIM ([<adj ust>] str)

<adjust> ::= {[where] [what]} FROM
wher e = BOTH | LEADING | TRAILING /* default is BOTH */
what ::= The substring to be renmpbved (repeatedly if necessary)
fromstr's head and/or tail. Default is ' ' (space).
Examples.
select trim (' Wste no space ') from rdb$dat abase
-- returns 'Waste no space'
select trim(leading from' \Waste no space ') from rdb$dat abase
-- returns 'Waste no space '
select trim(leading '." from' Waste no space ') from rdb$dat abase
-- returns ' \Waste no space '
select trim(trailing '!" from'Help!!!!') fromrdb$dat abase
-- returns 'Help'
select trim('la" from'lalala | love you Ella') fromrdb$dat abase
-- returns ' | love you EI'"
select trim('la" from'Lalala | love you Ella') fromrdb$dat abase
-- returns 'Lalala | |ove you E'

Notes.

e Ifstr isaBLOB, theresultisaBLOB. Otherwiseg, itisaVARCHAR(n) with n the formal length
of str.

» The substring to be removed, if specified, may not be bigger than 32767 bytes. However, if this
substring is repeated at st r 's head or tail, the total number of bytes removed may be far greater.
(Therestriction on the size of the substring will be lifted in Firebird 3.)

Warning
When used on a BLOB, this function may need to load the entire object into memory.
This may affect performance if huge BLOBs are involved.

TRUNC()

Availablein. DSQL, PSQL
Addedin. 2.1

Description. Returnstheinteger part of anumber. With the optional scal e argument, the number
can be truncated to powers-of-ten multiples (tens, hundreds, tenths, hundredths, etc.) instead of just
integers.

Result type. INTEGER, (scaled) BIGINT or DOUBLE

116

Built-in functions and variables

Syntax.

TRUNC (<number> [, <scal e>])

<nunber> ::= a nunerical expression
<scal e> ;.= an integer specifying the nunmber of deci mal places
toward which should be truncated, e.g.
2 for truncating to a nultiple of 0.01
1 for truncating to a multiple of 0.1
0 for truncating to a whol e nunber
-1 for truncating to a nmultiple of 10
-2 for truncating to a nultiple of 100

Notes.

 If thescal e argument is present, the result usually has the same scale as the first argument, e.g.
¢ TRUNC(789.2225, 2) returns 789.2200 (not 789.22)
« TRUNC(345.4, -2) returns 300.0 (not 300)
e TRUNC(-163.41, 0) returns -163.00 (not -163)

Otherwise, the result scale is O:
¢ TRUNC(-163.41) returns -163

| I mportant

- If you are used to the behaviour of the external function TRUNCATE, please notice that
the internal function TRUNC aways truncates toward zero, i.e. upward for negative
numbers.

Availablein. DSQL, ESQL, PSQL
Addedin. IB
Changedin. 20,21

Description. Returns the upper-case equivalent of the input string. The exact result depends on
the character set. With ASCII or NONE for instance, only ASCII characters are uppercased; with
OCTETS, the entire string is returned unchanged. Since Firebird 2.1 this function also fully supports
text BLOBs of any length and character set.

Result type. (VAR)CHAR or BLOB
Syntax.
UPPER (str)
Examples.
sel ect upper(_i so8859 1 'Débacle')
from rdb$dat abase
-- returns ' DEBACLE (before Firebird 2.0: 'DEBACLE)
sel ect upper(_iso8859 1 'Débacle' collate fr_fr)
from r db$dat abase

-- returns ' DEBACLE , follow ng French uppercasing rules

Seealso. LOWER

117

Built-in functions and variables

UUID_TO_CHAR()

Availablein. DSQL, PSQL
Addedin. 25
Description. Convertsa 16-byte UUID to its 36-character, human-readable ASCI| representation.
Result type. CHAR(36)
Syntax.
UUI D_TO CHAR (uui d)

uuid ::= a string consisting of 16 single-byte characters

Examples.

sel ect uuid_to_char(x' 876C45F4569B320DBCB4735AC3509E5F) from rdb$dat abas
-- returns '876C45F4- 569B- 320D BCB4- 735AC3509E5F

sel ect uuid_to_char(gen_uuid()) fromrdb$dat abase
-- returns e.g. '680D946B- 45FF- DB4E- B103- BB5711529B86'

select uuid_to_char('Firebird swings!') fromrdb$dat abase
-- returns '46697265-6269-7264-2073- 77696E677321'

Seealso. CHAR_TO_UUID(), GEN_UUID()

Aggregate functions

Aggregate functions operate on groups of records, rather than on individual records or variables. They
are often used in combination with a GROUP BY clause.

AVG()

Availablein. DSQL, ESQL, PSQL
Addedin. IB
Changed in.
Description. AVG returns the average argument value in the group.
Result type. Integer
Syntax.
AVG (expression)

* If thegroup is empty or contains only NULLSs, the result isNULL.

COUNT()

Availablein. DSQL, ESQL, PSQL
Addedin. 1B

Changed in.

118

Built-in functions and variables

Description. COUNT returns the number of non-null valuesin the group.
Result type. Integer
Syntax.

COUNT (expression)

* If the group is empty or contains only NULLSs, theresult is 0.

LIST()

Availablein. DSQL, PSQL
Addedin. 21
Changedin. 25
Description. LIST returns a string consisting of the non-NULL argument values in the group,
separated either by a comma or by a user-supplied delimiter. If there are no non-NULL values (this
includes the case where the group is empty), NULL is returned.
Result type. BLOB
Syntax.
LI ST ([ALL | DI STI NCT] expression [, separator])

» ALL (the default) resultsin all non-NULL values to be listed. With DISTINCT,
duplicates are removed, except if expr essi on isaBLOB.

 In Firebird 2.5 and up, the optional separ at or argument may be any string
expression. This makes it possible to specify e.g. ascii _char (13) as a
separator. (Thisimprovement has also been backported to 2.1.4.)

» Theexpr essi on andsepar at or arguments support BLOBs of any size and
character set.

» Dateltime and numerical arguments are implicitly converted to strings before
concatenation.

» Theresult is atext BLOB, except when expr essi on isaBLOB of another
subtype.

» The ordering of the list values is undefined.

MAX()

Availablein. DSQL, ESQL, PSQL
Addedin. IB
Changedin. 2.1

Description. MAX returns the maximum argument value in the group. If the argument is a string,
thisisthe value that comes last when the active collation is applied.

Result type. Varies

Syntax.

119

Built-in functions and variables

MAX (expression)
* If thegroup is empty or contains only NULLSs, the result isNULL.

* Since Firebird 2.1, this function fully supports text BLOBs of any size and
character set.

MIN()

Availablein. DSQL, ESQL, PSQL
Addedin. IB

Changedin. 2.1

Description. MIN returns the minimum argument value in the group. If the argument is a string,
thisisthe value that comes first when the active collation is applied.

Result type. Varies
Syntax.
M N (expression)
* If thegroup is empty or contains only NULLSs, the result isNULL.

* Since Firebird 2.1, this function fully supports text BLOBs of any size and
character set.

SUM()

Availablein. DSQL, ESQL, PSQL
Addedin. 1B
Changed in.
Description. SUM calculates and returns the sum of non-null valuesin the group.
Result type. Integer
Syntax.
SUM (expr essi on)

« If thegroup is empty or contains only NULLSs, the result isNULL.

120

Appendix A. Reserved words and
keywords

Reserved words are part of the Firebird SQL language. They cannot be used asidentifiers (e.g. astable
or procedure names), except when enclosed in double quotesin Dialect 3. However, you should avoid
this unless you have a compelling reason.

Keywords are also part of the language. They have aspecial meaning when used in the proper context,
but they are not reserved for Firebird's own and exclusive use. Y ou can use them asidentifiers without
double-quoting.

Reserved words

Full list of reserved words in Firebird 2.5:

ADD

ADMIN

ALL

ALTER

AND

ANY

AS

AT

AVG

BEGIN

BETWEEN

BIGINT

BIT_LENGTH

BLOB

BOTH

BY

CASE

CAST

CHAR

CHAR_LENGTH
CHARACTER
CHARACTER_LENGTH
CHECK

CLOSE

COLLATE

COLUMN

COMMIT

CONNECT
CONSTRAINT

COUNT

CREATE

CROSS

CURRENT
CURRENT_CONNECTION
CURRENT_DATE
CURRENT_ROLE
CURRENT_TIME
CURRENT_TIMESTAMP
CURRENT_TRANSACTION
CURRENT_USER

121

Reserved words and keywords

CURSOR
DATE
DAY

DEC
DECIMAL
DECLARE
DEFAULT
DELETE
DISCONNECT
DISTINCT
DOUBLE
DROP
ELSE

END
ESCAPE
EXECUTE
EXISTS
EXTERNAL
EXTRACT
FETCH
FILTER
FLOAT
FOR
FOREIGN
FROM
FULL
FUNCTION
GDSCODE
GLOBAL
GRANT
GROUP
HAVING
HOUR

IN

INDEX
INNER
INSENSITIVE
INSERT
INT
INTEGER
INTO

IS

JOIN
LEADING
LEFT

LIKE
LONG
LOWER
MAX
MAXIMUM_SEGMENT
MERGE
MIN
MINUTE
MONTH
NATIONAL
NATURAL
NCHAR
NO

122

Reserved words and keywords

NOT
NULL
NUMERIC
OCTET_LENGTH
OF

ON

ONLY

OPEN

OR

ORDER
OUTER
PARAMETER
PLAN
POSITION
POST_EVENT
PRECISION
PRIMARY
PROCEDURE
RDB$DB_KEY
REAL
RECORD_VERSION
RECREATE
RECURSIVE
REFERENCES
RELEASE
RETURNING_VALUES
RETURNS
REVOKE
RIGHT
ROLLBACK
ROW_COUNT
ROWS
SAVEPOINT
SECOND
SELECT
SENSITIVE
SET
SIMILAR
SMALLINT
SOME
SQLCODE
SQLSTATE (2.5.1)
START

SUM

TABLE
THEN

TIME
TIMESTAMP
TO
TRAILING
TRIGGER
TRIM

UNION
UNIQUE
UPDATE
UPPER

USER

USING

123

Reserved words and keywords

VALUE
VALUES
VARCHAR
VARIABLE
VARYING
VIEW
WHEN
WHERE
WHILE
WITH
YEAR

Keywords

The following terms have a special meaning in Firebird 2.5 DSQL. Some of them are also reserved
words, others aren't.

I <
N

N —

N>

A\

~>

ABS
ACCENT
ACOS
ACTION
ACTIVE
ADD
ADMIN
AFTER
ALL
ALTER
ALWAYS
AND

ANY

AS

ASC
ASCENDING
ASCII_CHAR
ASCII_VAL
ASIN

AT

ATAN

124

Reserved words and keywords

ATAN2

AUTO
AUTONOMOUS
AVG

BACKUP
BEFORE
BEGIN
BETWEEN
BIGINT
BIN_AND
BIN_NOT
BIN_OR
BIN_SHL
BIN_SHR
BIN_XOR
BIT_LENGTH
BLOB

BLOCK

BOTH

BREAK

BY

CALLER
CASCADE
CASE

CAST

CEIL

CEILING
CHAR
CHAR_LENGTH
CHAR_TO_UUID
CHARACTER
CHARACTER_LENGTH
CHECK

CLOSE
COALESCE
COLLATE
COLLATION
COLUMN
COMMENT
COMMIT
COMMITTED
COMMON
COMPUTED
CONDITIONAL
CONNECT
CONSTRAINT
CONTAINING
CoS

COSH

coT

COUNT
CREATE
CROSS
CSTRING
CURRENT
CURRENT_CONNECTION
CURRENT DATE
CURRENT_ROLE

125

Reserved words and keywords

CURRENT_TIME
CURRENT_TIMESTAMP
CURRENT_TRANSACTION
CURRENT_USER
CURSOR
DATA
DATABASE
DATE
DATEADD
DATEDIFF
DAY

DEC
DECIMAL
DECLARE
DECODE
DEFAULT
DELETE
DELETING
DESC
DESCENDING
DESCRIPTOR
DIFFERENCE
DISCONNECT
DISTINCT

DO

DOMAIN
DOUBLE
DROP

ELSE

END
ENTRY_POINT
ESCAPE
EXCEPTION
EXECUTE
EXISTS

EXIT

EXP
EXTERNAL
EXTRACT
FETCH

FILE

FILTER

FIRST
FIRSTNAME
FLOAT
FLOOR

FOR

FOREIGN
FREE_IT
FROM

FULL
FUNCTION
GDSCODE
GEN_ID
GEN_UUID
GENERATED
GENERATOR
GLOBAL

126

Reserved words and keywords

GRANT
GRANTED
GROUP
HASH
HAVING
HOUR

IF

IGNORE

IF

IN
INACTIVE
INDEX
INNER
INPUT_TYPE
INSENSITIVE
INSERT
INSERTING
INT
INTEGER
INTO

IS
ISOLATION
JOIN

KEY

LAST
LASTNAME
LEADING
LEAVE
LEFT
LENGTH
LEVEL

LIKE

LIMBO

LIST

LN

LOCK

LOG

LOG10
LONG
LOWER
LPAD
MANUAL
MAPPING
MATCHED
MATCHING
MAX
MAXIMUM_SEGMENT
MAXVALUE
MERGE
MIDDLENAME
MILLISECOND
MIN
MINUTE
MINVALUE
MOD
MODULE_NAME
MONTH
NAMES

127

Reserved words and keywords

NATIONAL
NATURAL
NCHAR
NEXT

NO

NOT

NULL
NULLIF
NULLS
NUMERIC
OCTET_LENGTH
OF

ON

ONLY

OPEN
OPTION

OR

ORDER

0S NAME
OUTER
OUTPUT_TYPE
OVERFLOW
OVERLAY
PAD

PAGE
PAGE_SIZE
PAGES
PARAMETER
PASSWORD
Pl

PLACING
PLAN
POSITION
POST_EVENT
POWER
PRECISION
PRESERVE
PRIMARY
PRIVILEGES
PROCEDURE
PROTECTED
RAND
RDB$DB_KEY
READ

REAL
RECORD_VERSION
RECREATE
RECURSIVE
REFERENCES
RELEASE
REPLACE
REQUESTS
RESERV
RESERVING
RESTART
RESTRICT
RETAIN
RETURNING

128

Reserved words and keywords

RETURNING_VALUES
RETURNS
REVERSE
REVOKE
RIGHT

ROLE
ROLLBACK
ROUND
ROW_COUNT
ROWS

RPAD
SAVEPOINT
SCALAR_ARRAY
SCHEMA
SECOND
SEGMENT
SELECT
SENSITIVE
SEQUENCE
SET
SHADOW
SHARED
SIGN
SIMILAR

SIN
SINGULAR
SINH

SIZE

SKIP
SMALLINT
SNAPSHOT
SOME

SORT
SOURCE
SPACE
SQLCODE
SQLSTATE (2.5.1)
SQRT
STABILITY
START
STARTING
STARTS
STATEMENT
STATISTICS
SUB_TYPE
SUBSTRING
SUM
SUSPEND
TABLE

TAN

TANH
TEMPORARY
THEN

TIME
TIMEOUT
TIMESTAMP
TO
TRAILING

129

Reserved words and keywords

TRANSACTION
TRIGGER
TRIM
TRUNC
TWO_PHASE
TYPE
UNCOMMITTED
UNDO
UNION
UNIQUE
UPDATE
UPDATING
UPPER
USER
USING
UUID_TO_CHAR
VALUE
VALUES
VARCHAR
VARIABLE
VARYING
VIEW

WAIT
WEEK
WEEKDAY
WHEN
WHERE
WHILE
WITH
WORK
WRITE
YEAR
YEARDAY

130

Appendix B. Character sets and
collations

To be written.

131

Appendix C. Error codes

To be written.

132

Appendix D. Document History

The exact file history isrecorded in the manual module in our CV S tree; see http://sourceforge.net/
cvs/7group_id=9028

Revision History
Revision 1.0 ??Mon 2012 XX
First publication.

133

http://sourceforge.net/cvs/?group_id=9028
http://sourceforge.net/cvs/?group_id=9028

Appendix E. License notice

The contents of this Documentation are subject to the Public Documentation License Version 1.0
(the “License”); you may only use this Documentation if you comply with the terms of this License.
Copiesof the License are available at http://www.firebirdsgl.org/pdf manual/pdl.pdf (PDF) and http://
www.firebirdsgl.org/manual/pdl.html (HTML).

The Original Documentation istitled Firebird 2.5 Language Reference.

Thelnitial Writersof the Original Documentation are: Paul Vinkenoog, Dmitry Y emanow and Thomas
Woinke.

Copyright (C) 2008-2012. All Rights Reserved. Initial Writers contact: paul at vinkenoog dot nl.
Writers and Editors of included PDL-licensed material are: J. Beesley, Helen Borrie, Arno Brinkman,
Frank Ingermann, Vlad Khorsun, Alex Peshkov, Nickolay Samofatov, Adriano dos Santos Fernandes,
Dmitry Y emanov.

Included portions are Copyright (C) 2001-2010 by their respective authors. All Rights Reserved.

134

http://www.firebirdsql.org/pdfmanual/pdl.pdf
http://www.firebirdsql.org/manual/pdl.html
http://www.firebirdsql.org/manual/pdl.html

	Firebird 2.5 Language Reference
	Table of Contents
	Chapter 1. Introduction
	Subject matter
	Authorship

	Chapter 2. Background
	SQL flavors
	SQL dialects
	Error conditions

	Chapter 3. Language structure
	Basics: statements, tokens, keywords
	Identifiers
	Literals
	Operators and specials
	Comments

	Chapter 4. Data types
	Numeric types
	SMALLINT
	INTEGER
	BIGINT data type
	FLOAT data type
	REAL data type
	DOUBLE PRECISION data type
	LONG FLOAT data type
	NUMERIC data type
	DECIMAL data type

	Character types
	CHARACTER data type
	NATIONAL CHARACTER data type
	CHARACTER VARYING data type
	NATIONAL CHARACTER VARYING data type

	Date/time types
	DATE data type
	TIME data type
	TIMESTAMP data type

	Binary types
	BLOB data type

	Arrays
	Comparison rules
	Coercion rules
	Collation rules

	Chapter 5. Common language elements
	Value expressions
	Select expressions
	Predicates

	Chapter 6. DML statements
	DELETE
	Aliases
	TRANSACTION
	WHERE
	PLAN
	ORDER BY
	ROWS
	RETURNING

	EXECUTE BLOCK
	Input and output parameters
	Statement terminators

	EXECUTE PROCEDURE
	INSERT
	INSERT ... VALUES
	INSERT ... SELECT
	INSERT ... DEFAULT VALUES
	The RETURNING clause
	Inserting into BLOB columns

	INSERT CURSOR
	MERGE
	SELECT
	The TRANSACTION directive
	FIRST, SKIP and ROWS
	The column list
	Selecting INTO variables
	The FROM clause
	Selecting from a table or view
	Selecting from a stored procedure
	Selecting from a derived table
	Selecting from a CTE

	Joins
	Inner vs. outer joins
	Qualified joins
	Explicit-condition joins
	Named columns joins

	Natural joins
	A note on equality
	Cross joins
	Ambiguous field names in joins

	The WHERE clause
	The GROUP BY clause
	HAVING

	The PLAN clause
	Simple plans
	Composite plans

	UNION
	MATERIAL COPIED FROM THE LRU
	FROM LRU: Aggregate functions: Extended functionality
	Mixing aggregate functions from different contexts
	Aggregate functions and GROUP BY items inside subqueries
	Subqueries inside aggregate functions
	Nesting aggregate function calls
	Aggregate statements: Stricter HAVING and ORDER BY

	FROM LRU: [AS] before relation alias
	FROM LRU: COLLATE subclause for text BLOB columns
	FROM LRU: Common Table Expressions (“WITH ... AS ... SELECT”)
	Recursive CTEs

	FROM LRU: Derived tables (“SELECT FROM SELECT”)
	FROM LRU: FIRST and SKIP
	FROM LRU: GROUP BY
	Grouping by alias, position and expressions

	FROM LRU: HAVING: Stricter rules
	FROM LRU: JOIN
	Ambiguous field names rejected
	CROSS JOIN
	Named columns JOIN
	Natural JOIN

	FROM LRU: ORDER BY
	Order by column alias
	Ordering by column position causes * expansion
	Ordering by expressions
	NULLs placement
	Stricter ordering rules with aggregate statements

	FROM LRU: PLAN
	Handling of user PLANs improved
	ORDER with INDEX
	PLAN must include all tables

	FROM LRU: Relation alias makes real name unavailable
	FROM LRU: ROWS
	FROM LRU: UNION
	UNIONs in subqueries
	UNION DISTINCT

	FROM LRU: WITH LOCK

	UPDATE
	Using an alias
	The SET clause
	The WHERE clause
	ORDER BY and ROWS
	RETURNING
	Updating BLOB columns

	UPDATE OR INSERT
	The RETURNING clause

	Chapter 7. Built-in functions and variables
	Context variables
	CURRENT_CONNECTION
	CURRENT_DATE
	CURRENT_ROLE
	CURRENT_TIME
	CURRENT_TIMESTAMP
	CURRENT_TRANSACTION
	CURRENT_USER
	DELETING
	GDSCODE
	INSERTING
	NEW
	'NOW'
	OLD
	ROW_COUNT
	SQLCODE
	SQLSTATE
	'TODAY'
	'TOMORROW'
	UPDATING
	'YESTERDAY'
	USER

	Scalar functions
	ABS()
	ACOS()
	ASCII_CHAR()
	ASCII_VAL()
	ASIN()
	ATAN()
	ATAN2()
	BIN_AND()
	BIN_OR()
	BIN_SHL()
	BIN_SHR()
	BIN_XOR()
	BIT_LENGTH()
	CAST()
	CEIL(), CEILING()
	CHAR_LENGTH(), CHARACTER_LENGTH()
	CHAR_TO_UUID()
	COALESCE()
	COS()
	COSH()
	COT()
	DATEADD()
	DATEDIFF()
	DECODE()
	EXP()
	EXTRACT()
	MILLISECOND
	WEEK

	FLOOR()
	GEN_ID()
	GEN_UUID()
	HASH()
	IIF()
	LEFT()
	LN()
	LOG()
	LOG10()
	LOWER()
	LPAD()
	MAXVALUE()
	MINVALUE()
	MOD()
	NULLIF()
	OCTET_LENGTH()
	OVERLAY()
	PI()
	POSITION()
	POWER()
	RAND()
	RDB$GET_CONTEXT()
	RDB$SET_CONTEXT()
	REPLACE()
	REVERSE()
	RIGHT()
	ROUND()
	RPAD()
	SIGN()
	SIN()
	SINH()
	SQRT()
	SUBSTRING()
	TAN()
	TANH()
	TRIM()
	TRUNC()
	UPPER()
	UUID_TO_CHAR()

	Aggregate functions
	AVG()
	COUNT()
	LIST()
	MAX()
	MIN()
	SUM()

	Appendix A. Reserved words and keywords
	Reserved words
	Keywords

	Appendix B. Character sets and collations
	Appendix C. Error codes
	Appendix D. Document History
	Appendix E. License notice

