
Firebird 2.5 Language Reference

Paul Vinkenoog
Dmitry Yemanov
Thomas Woinke

Firebird 2.5 Language Reference
by Paul Vinkenoog, Dmitry Yemanov, and Thomas Woinke

iii

Table of Contents
1. Introduction .. 1

Subject matter ... 1
Authorship .. 1

2. Background ... 2
SQL flavors .. 2
SQL dialects ... 2
Error conditions .. 3

3. Language structure ... 4
Basics: statements, tokens, keywords .. 4
Identifiers ... 4
Literals .. 4
Operators and specials .. 4
Comments .. 4

4. Data types .. 5
Numeric types ... 5

SMALLINT .. 5
INTEGER .. 5
BIGINT data type .. 5
FLOAT data type .. 5
REAL data type .. 6
DOUBLE PRECISION data type ... 6
LONG FLOAT data type .. 6
NUMERIC data type .. 6
DECIMAL data type .. 7

Character types ... 7
CHARACTER data type ... 7
NATIONAL CHARACTER data type ... 8
CHARACTER VARYING data type ... 8
NATIONAL CHARACTER VARYING data type ... 8

Date/time types ... 9
DATE data type .. 9
TIME data type ... 9
TIMESTAMP data type .. 9

Binary types .. 10
BLOB data type .. 10

Arrays .. 11
Comparison rules ... 11
Coercion rules ... 12
Collation rules ... 12

5. Common language elements ... 13
Value expressions .. 13
Select expressions .. 13
Predicates ... 13

6. DML statements ... 14
DELETE .. 14

Aliases ... 14
TRANSACTION ... 15
WHERE ... 15
PLAN .. 15
ORDER BY .. 15
ROWS ... 15
RETURNING .. 16

EXECUTE BLOCK ... 17
Input and output parameters ... 18
Statement terminators ... 18

Firebird 2.5 Language Reference

iv

EXECUTE PROCEDURE ... 19
INSERT ... 20

INSERT ... VALUES .. 20
INSERT ... SELECT ... 21
INSERT ... DEFAULT VALUES ... 21
The RETURNING clause .. 21
Inserting into BLOB columns .. 22

INSERT CURSOR ... 22
MERGE ... 23
SELECT ... 24

The TRANSACTION directive .. 24
FIRST, SKIP and ROWS .. 25
The column list ... 27
Selecting INTO variables .. 29
The FROM clause .. 30
Joins .. 33
The WHERE clause ... 39
The GROUP BY clause .. 41
The PLAN clause .. 45
UNION .. 48
MATERIAL COPIED FROM THE LRU ... 50

UPDATE .. 67
Using an alias ... 68
The SET clause ... 68
The WHERE clause ... 69
ORDER BY and ROWS ... 69
RETURNING .. 70
Updating BLOB columns .. 70

UPDATE OR INSERT ... 70
The RETURNING clause .. 71

7. Built-in functions and variables .. 72
Context variables ... 72

CURRENT_CONNECTION ... 72
CURRENT_DATE ... 72
CURRENT_ROLE ... 72
CURRENT_TIME ... 73
CURRENT_TIMESTAMP ... 73
CURRENT_TRANSACTION ... 74
CURRENT_USER ... 74
DELETING ... 75
GDSCODE ... 75
INSERTING ... 76
NEW ... 76
'NOW' ... 76
OLD ... 77
ROW_COUNT ... 77
SQLCODE ... 78
SQLSTATE ... 78
'TODAY' ... 79
'TOMORROW' ... 80
UPDATING ... 80
'YESTERDAY' ... 80
USER ... 81

Scalar functions ... 81
ABS() .. 81
ACOS() .. 82
ASCII_CHAR() ... 82
ASCII_VAL() ... 82

Firebird 2.5 Language Reference

v

ASIN() ... 83
ATAN() ... 83
ATAN2() .. 84
BIN_AND() .. 84
BIN_OR() ... 85
BIN_SHL() ... 85
BIN_SHR() ... 85
BIN_XOR() .. 86
BIT_LENGTH() .. 86
CAST() .. 87
CEIL(), CEILING() .. 89
CHAR_LENGTH(), CHARACTER_LENGTH() ... 90
CHAR_TO_UUID() ... 90
COALESCE() ... 91
COS() .. 91
COSH() .. 92
COT() .. 92
DATEADD() ... 93
DATEDIFF() ... 93
DECODE() ... 94
EXP() .. 95
EXTRACT() ... 95
FLOOR() .. 96
GEN_ID() ... 97
GEN_UUID() .. 97
HASH() .. 98
IIF() ... 98
LEFT() ... 98
LN() .. 99
LOG() .. 99
LOG10() ... 100
LOWER() ... 100
LPAD() .. 101
MAXVALUE() .. 102
MINVALUE() ... 102
MOD() ... 102
NULLIF() ... 103
OCTET_LENGTH() ... 103
OVERLAY() ... 104
PI() .. 105
POSITION() .. 105
POWER() ... 106
RAND() .. 106
RDB$GET_CONTEXT() ... 107
RDB$SET_CONTEXT() ... 108
REPLACE() .. 109
REVERSE() .. 109
RIGHT() ... 110
ROUND() ... 111
RPAD() .. 111
SIGN() ... 112
SIN() .. 113
SINH() ... 113
SQRT() ... 113
SUBSTRING() ... 114
TAN() .. 115
TANH() .. 115
TRIM() ... 115

Firebird 2.5 Language Reference

vi

TRUNC() .. 116
UPPER() ... 117
UUID_TO_CHAR() .. 118

Aggregate functions .. 118
AVG() .. 118
COUNT() .. 118
LIST() .. 119
MAX() ... 119
MIN() ... 120
SUM() .. 120

A. Reserved words and keywords ... 121
Reserved words .. 121
Keywords .. 124

B. Character sets and collations .. 131
C. Error codes ... 132
D. Document History .. 133
E. License notice .. 134

vii

List of Tables
6.1. NULLs placement in ordered columns .. 62
7.1. Possible CASTs ... 88
7.2. Types and ranges of EXTRACT results ... 96
7.3. Context variables in the SYSTEM namespace ... 107

1

Chapter 1. Introduction
Subject matter

What's this book about?

To be updated.

Authorship
To be updated.

2

Chapter 2. Background
SQL flavors

This reference describes the SQL language supported by Firebird. However, there are different subsets
of SQL that apply to different areas and thus should be distinguished. Namely, they are:

• Dynamic SQL (DSQL)

• Procedural SQL (PSQL)

• Embedded SQL (ESQL)

• Interactive SQL (ISQL)

Dynamic SQL is the major part of the language which corresponds to the Part 2 (SQL/Foundation)
part of the SQL specification. DSQL represents statements passed by client applications through the
public Firebird API and processed by the database engine.

Procedural SQL is the extention to the Dynamic SQL which additionally allows compound statements
containing local variables, assignments, conditions, loops and other procedural constructs. PSQL
corresponds to the Part 4 (SQL/PSM) part of the SQL specifications. Originally, PSQL extenstions
were available in persistent stored modules (procedures and triggers) only, but recently they became
surfaced in Dynamic SQL as well (see EXECUTE BLOCK).

Embedded SQL defines the DSQL subset supported by Firebird GPRE - the application which allows
you to embed SQL constructs into your host programming language (C, C++, Pascal, Cobol, etc) and
preprocess those embedded constructs into the proper Firebird API calls. Please note that only a part
of DSQL statements and expressions are supported in ESQL.

Interactive ISQL means the language that can be executed using Firebird ISQL - the command-line
application for interactive SQL access to databases. As it's a regular client application, its native
language is DSQL. But it also offers a few additional commands

Both DSQL and PSQL subsets are completely presented in this reference. Neither ESQL nor ISQL
flavors are described here unless mentioned explicitly.

SQL dialects
The SQL dialect is a term that defines the specific features of the SQL language that are available
when accessing the database. SQL dialects can be defined at the database level and at the connection
level. There are three dialects available:

• Dialect 1 stores both date and time information in a DATE data type and has a TIMESTAMP data
type which is identical to DATE. Double quotes are used to delimit string data. The precision for
NUMERIC and DECIMAL data types is less than in dialect 3 and if the precision is greater than
9, Firebird internally stores these as long floating point values. BIGINT is not permitted as a data
type. Identifiers are case-insensitive. Generator values are stored as 32-bit integers.

• Dialect 2 is available only on the Firebird client connection and cannot be set in the database. It
is intended to assist debugging of possible problems with legacy data when migrating a database
from dialect 1 to 3.

• Dialect 3 databases allow numbers (DECIMAL and NUMERIC data types) to be internally stored
as long fixed point values (scaled integers) when the precision is greater than 9. The TIME data
type is able to be used and stores time data only. The DATE data type stores on date information.
BIGINT is available as a 64-bit integer data type. Double quotes can be used but only for identifiers

Background

3

that are case-sensitive, not for string data which has to use single quotes. Generator values are stored
as 64-bit integers.

Dialect 1 is targeted to provide support for legacy (pre-v6) InterBase applications so that they would
work the same way with Firebird. Dialect 2 is used as a transition dialect intended to highlight the issues
while migrating to dialect 3. Newly developed databases and applications are highly recommended
to use dialect 3. Both database and connection dialects should match, except the migration case with
Dialect 2.

This reference describes the semantics of SQL dialect 3 unless specified otherwise.

Error conditions
Processing of the every SQL statement either completes successfully or fails due to a specific error
condition.

4

Chapter 3. Language structure
Basics: statements, tokens, keywords

To be written.

Identifiers
To be written.

Literals
To be written.

Operators and specials
To be written.

Comments
To be written.

5

Chapter 4. Data types
Numeric types

SMALLINT
SMALLINT is the 16-bit signed integer type.

Syntax:

SMALLINT

SMALLINT numbers range from -215 to 215-1, or from -32768 to 32767.

INTEGER
INTEGER is the 32-bit signed integer type.

Syntax:

INTEGER

A shorthand form INT is also available.

INTEGER numbers range from -231 to 231-1, or from -2147483648 to 2147483647.

BIGINT data type
BIGINT is the 64-bit signed integer type.

Syntax:

BIGINT

BIGINT numbers range from -263 to 263-1, or from -9223372036854775808 to
9223372036854775807.

Note

The BIGINT data type is available in Dialect 3 only.

FLOAT data type
FLOAT (precision) is the approximate number with the binary precision equal to or greater than
specified by the <precision>.

Syntax:

FLOAT [(precision)]

The precision must be positive, but there's no explicit upper limit (however, it's physically limited by
32767). If the precision declaration is omitted, then zero value is implied.

If the precision is less than 8 then the FLOAT data type is internally implemented as a single precision
floating-point value (commonly it is 32-bit). The FLOAT data type with a greater declared precision

Data types

6

is implemented as a double precision floating-point value (commonly it is 64-bit). Both formats are
covered by the IEEE 754 standard.

The declared precision is not strictly enforced, it only dictates the choice between the two supported
binary precisions.

REAL data type
REAL is the approximate number with the binary precision less than 8.

Syntax:

REAL

REAL is a predefined FLOAT data type implemented as a single precision floating-point value, so
please refer to the appropriate section for the details.

DOUBLE PRECISION data type
DOUBLE PRECISION is the approximate number with the binary precision equal to or greater than 8.

Syntax:

DOUBLE PRECISION

DOUBLE PRECISION is a predefined FLOAT data type implemented as a double precision floating-
point value, so please refer to the appropriate section for the details.

LONG FLOAT data type
LONG FLOAT is the approximate number with the binary precision equal to or greater than 8.

Syntax:

LONG FLOAT [(precision)]

LONG FLOAT is non-standard alternative to the DOUBLE PRECISION data type, so please refer to
the appropriate section for the details. The optional precision declaration is ignored.

NUMERIC data type
NUMERIC (precision, scale) is the exact number with the decimal precision and scale specified by
the <precision> and <scale>.

Syntax:

NUMERIC [precision [, scale]]

The scale of NUMERIC is the count of decimal digits in the fractional part, to the right of the decimal
point. The precision of NUMERIC is the total count of decimal digits in the number.

The precision must be positive, the maximum supported value is 18. The scale must be zero or positive,
up to the specified precision.

If the scale is omitted, then zero value is implied, thus meaning an integer value of the specified
precision, i.e. NUMERIC (P) is equivalent to NUMERIC (P, 0). If both the precision and the scale are
omitted, then precision of 9 and zero scale are implied, i.e. NUMERIC is equivalent to NUMERIC
(9, 0).

Data types

7

The internal representation of the NUMERIC data type may vary. Numerics with the precision up to
(and including) 4 are always stored as scaled short integers (SMALLINT). Numerics with the precision
up to (and including) 9 are always stored as scaled regular integers (INTEGER). Storage of higher
precision numerics depends on the SQL dialect. In Dialect 3, they are stored as scaled large integers
(BIGINT). In Dialect 1, however, large integers are not available, therefore they are stored as double
precision floating-point values (DOUBLE PRECISION).

The effective precision limit for the given value depends on the corresponding storage. For example,
NUMERIC (5) will be stored as INTEGER, thus allowing values in the precision range up to (and
including) NUMERIC (9). So beware that the declared precision is not strictly enforced.

Values outside the range limited by the effective precision are not allowed. Values with the scale larger
than the declared one will be rounded to the declared scale while performing an assignment.

DECIMAL data type

DECIMAL (precision, scale) is the exact number with the decimal scale specified by the <scale> and
the decimal precision equal to or greater than the value of the specified <precision>.

Syntax:

DECIMAL [precision [, scale]]

A shorthand form DEC is also available.

DECIMAL data type is almost identical to the NUMERIC data type, so please refer to the appropriate
section for the details. The only difference is that DECIMAL is never internally stored as a small
integer, so its minimal effective precision is equal to 9.

Note

Accordingly to the SQL standard, NUMERIC is declared to be a strict data type which
enforces the declared precision, while DECIMAL can accept more decimal digits than
declared. In Firebird, however, both enforce the effective precision rather than the
declared one, with NUMERIC being just a bit stricter in the lower precision range.

Character types

CHARACTER data type

CHARACTER (length) is the fixed-length string with the character length equal to the specified
<length>.

Syntax:

CHARACTER [(length)] [CHARACTER SET charset]

A shorthand form CHAR is also available.

The declared length must be positive. If the length specification is omitted, length of 1 (one character)
is implied. The maximum supported byte length is 32767, thus the maximum supported character
length depends on the declared character set.

The CHARACTER data type definition may include the character set name, so that all the characters of
the string value belong to the declared character set. If the character set name is omitted, the database-
wise default character set is implied. See the complete list of supported character sets in Appendix B.

Data types

8

Values of the CHARACTER data type are right padded with the appropriate padding character up to
the declared length, and are physically stored this way. However, the trailing padding characters are
semantically insignificant and ignored when comparing CHARACTER values. Strings longer than the
declared length are not accepted, unless the excess characters are all equal to the appropriate padding
character, in this case the string is truncated to the declared length.

Note

The default padding character is the space character (ASCII code 0x20) and it applies
to the every character set except OCTETS which represents binary strings and thus has
binary zero (ASCII code 0x00) as the padding character.

NATIONAL CHARACTER data type
NATIONAL CHARACTER (length) is the fixed-length string with the character length equal to the
specified <length> and having the predefined character set of ISO8859_1.

Syntax:

NATIONAL CHARACTER [(length)]

Shorthand forms NATIONAL CHAR and NCHAR are also available.

Besides having the character set hardcoded, NATIONAL CHARACTER data type is absolutely equal
to the CHARACTER data type, so please refer to the appropriate section for the details.

CHARACTER VARYING data type
CHARACTER VARYING (length) is the varying-length string with the character length limited by
the specified <length>.

Syntax:

CHARACTER VARYING (length) [CHARACTER SET charset]

Shorthand forms CHAR VARYING and VARCHAR are also available.

The declared length is mandatory and it must be positive. The maximum supported byte length is
32765, thus the maximum supported character length depends on the declared character set.

The CHARACTER data type definition may include the character set name, so that all the characters of
the string value belong to the declared character set. If the character set name is omitted, the database-
wise default character set is implied. See the complete list of supported character sets in Appendix B.

Values of the CHARACTER VARYING data type are never padded. Internally, the CHARACTER
VARYING values are prefixed with the 16-bit length counter, so they are stored using the actual string
length. Strings longer than the declared length are not accepted.

NATIONAL CHARACTER VARYING data type
NATIONAL CHARACTER VARYING (length) is the varying-length string with the character length
limited by the specified <length> and having the predefined character set of ISO8859_1.

Syntax:

NATIONAL CHARACTER VARYING [(length)]

A shorthand form NATIONAL CHAR VARYING is also available.

Data types

9

Besides having the character set hardcoded, NATIONAL CHARACTER VARYING data type is
absolutely equal to the CHARACTER VARYING data type, so please refer to the appropriate section
for the details.

Date/time types

DATE data type
DATE represents the temporal value containing the year-month-day part.

Syntax:

DATE

DATE values range from 01-Jan-0001 to 31-Dec-9999.

Internally, DATE values are stored as 32-bit signed integers, representing the offset (in days) from
the baseline date (17-Nov-1858).

Note

This definition applies to Dialect 3 only. In Dialect 1, the DATE data type is a
replacement for the TIMESTAMP data type, thus containing both date and time parts.
See the appropriate section for the details.

TIME data type
TIME represents the temporal value containing the hour-minute-second part, including second
fractions.

Syntax:

TIME

TIME values range from 00:00:00.0000 AM to 23:59:59.9999 PM.

Internally, TIME values are stored as 32-bit scaled unsigned integers, representing both the number of
seconds passed since the day start (which is a baseline, so that zero time value means a midnight) and
the number of second fractions passed since the start of the current second. The scale value is 10000,
so the supported precision is 1/10000 second (100 microseconds).

Note

The TIME data type is available in Dialect 3 only.

TIMESTAMP data type
TIMESTAMP represents the temporal value containing both year-month-day and hour-minute-second
parts, including second fractions.

Syntax:

TIMESTAMP

TIMESTAMP values range from 01-Jan-0001 00:00:00.0000 AM to 31-Dec-9999 23:59:59.9999 PM.

Internally, TIMESTAMP values are stored as a combination of two 32-bit integers, each representing
its own part (date or time), so its total size is 64 bits. See prior sections for the storage details.

Data types

10

Binary types

BLOB data type
BLOB is the data type representing text or binary data of arbitrary length.

Syntax:

BLOB [SUB_TYPE subtype]
 [SEGMENT SIZE segsize]
 [CHARACTER SET charset]

Shortcuts:

BLOB (segsize)
BLOB (segsize, subtype)
BLOB (, subtype)

By default, every blob internally consists of a chained list of segments, each up to 64KB in size. Small
segments are combined together so that they could share the same disk page. There are three storage
levels of blobs. Blobs of level 0 fit on a single disk page and may even reside at the same data page
where the rest of the fields are stored. Blobs of level 1 are always stored on dedicated disk pages and
consist of the root page (which itself does not store any blob data but contains an inventory of other
data pages) and a number of data pages the blob content is splitted among. Blobs of level 2 extend
the aforementioned scheme by having a root inventory page which enumerates other inventory pages
that in turn point to the data pages containing the blob contents. This three-level storage layout along
with the database page size establish the practical size limit for blobs, which is equal to 2GB for the
maximum supported page size of 16KB.

So it can be said that BLOB segments represent the logical blob structure rather than the physical
one. They do not directly affect the blob storage on disk and the appropriate low-level I/O operations
performed by Firebird internally, but they define the granulation of the blob contents and the way
how the blob is accessed at the interface layer. If you need to read the whole blob, you should iterate
through all the segments. If you need to read just a few bytes in the middle of the blob, you should
read all the segments preceding these bytes.

Note

There is also a concept of so called streamed blobs. They are not splitted into separate
segments and are directly accessible for reading and writing from any specified position.
The choice between segmented and streamed blobs is done by the application developer
when creating the blob contents, it's not covered by the BLOB declaration in SQL.

The BLOB sub-type describes the blob contents. While Firebird usually does not guess about the
internal structure of the BLOB data, there are some predefined sub-types that may affect the BLOB
handling. The BLOB sub-type can be declared via either the corresponding numeric value, or by using
a mnemonic name for the predefined sub-types, e.g.:

BLOB SUB_TYPE 0
BLOB SUB_TEXT BINARY

If the BLOB sub-type is omitted, sub-type of 0 (BINARY) is implied. However, if the BLOB
declararion includes the character set (ses below), then sub-type of 1 (TEXT) is implied.

BLOB sub-types can be negative, zero or positive values in the range from -32768 to 32767. Negative
BLOB sub-types are user-defined ones and can be used by application developers to distinguish
between different formats of binary contents. Zero BLOB sub-type is predefined for binary blobs
that are processed transparently without any assumptions about their contents. BLOB sub-type of 1 is
predefined for text blobs that are processed similarly to the character data types. They may be treated

Data types

11

like very long character strings, including conversions from and to character data types, usage in the
various string-wise operators and built-in functions, and so on. Binary and text blobs can be used by
application developers as well. Positive BLOB sub-types greater than 1 are reserved for internal use,
they are not allowed for user blobs.

The BLOB segment size defines the number of bytes to be processed (read or written) by a single
interface operation with that blob. It must be a positive value limited by 65535 bytes. If the BLOB
segment size is omitted, then the value of 80 bytes is implied. The BLOB segment size also

The BLOB declaration may include the character set name, so that all the characters the blob contents
consists of belong to the specified character set. The character set can be specified for text and binary
blobs only. If this happens for a binary blob, then the sub-type gets implicitly changed to TEXT. If
the character set name is omitted, the database-wise default character set is implied. See the complete
list of supported character sets in Appendix B.

Arrays
To be written.

Comparison rules
Values of the same data type are compared accordingly to the natural rules of the corresponding data
type. Blobs are compared either byte-wise or character-wise for binary and text blobs respectively,
using their entire contents.

Mixed-type comparisons, however, are processed using the special priority rules. The value with the
data type of the less priority is implicitly converted to the data type of the value with greater priority
and then both values are compared naturally. The priority list is the following (starting with the least
priority):

• CHARACTER, CHARACTER VARYING

• SMALLINT

• INTEGER

• BIGINT

• REAL

• DOUBLE PRECISION

• DATE, TIME

• TIMESTAMP

The derived data types (NUMERIC, DECIMAL, FLOAT, LONG FLOAT) are compared accordingly
to the priorities of their underlying data types. Scaled numeric values are adjusted to their maximal
scale before comparing.

Character strings are compared without regard to their trailing padding characters, if any. International
character strings (any character set except NONE, OCTETS and ASCII) are compared accordingly to
their collation rules, explicit or implicit.

When DATE or TIME value is converted to TIMESTAMP, it gets its missing part completed. DATE
values get zero time part (midnight), TIME values get the today's date as their date part.

If one of the comparison arguments is a blob, then custom rules are used. In this case, the second
argument gets converted to a string value (binary or character) and then the string comparison rules
apply.

Data types

12

Coercion rules
There are situations where a few values of different data types must provide the unified result. In this
case, those values should be converted to their common (less restrictive) data type. Below are the rules
applied (in the specified order) for those implicit conversions:

• If any data type is BLOB, the result is also BLOB

• If any data type is CHARACTER VARYING, or if one data type is CHARACTER and another one
is numeric or date/time, the result is CHARACTER VARYING

• If any data type is CHARACTER, the result is also CHARACTER

• If any datatype is an approximate numeric, then each data type must be numeric and the result is
an approximate numeric

• If all data types are exact numerics, the result is an exact numeric with the maximal precision and
maximal scale

• If any data type is DATE, TIME or TIMESTAMP, then each data type must be the same DATE,
TIME or TIMESTAMP and the result is also the same DATE, TIME or TIMESTAMP

If the coercion result is BLOB and there is any binary blob in the list, the resulting blob is also binary.

If the coercion results in a text blob, the resulting charset is derived using the following rules:

• If any input character set is OCTETS, the resulting character set is also OCTETS

• If any input character set is neither NONE nor ASCII, it is chosen as the resulting character set

• If any input character set is ASCII, or if any input part is numeric or date/time, result is ASCII

• Otherwise, result is NONE

Collation rules
To be written.

13

Chapter 5. Common language
elements
Value expressions

To be written.

Select expressions
To be written.

Predicates
To be written.

14

Chapter 6. DML statements
DELETE

Available in. DSQL, ESQL, PSQL

Description. DELETE removes rows from a database table or from one or more tables underlying
a view. WHERE and ROWS clauses can limit the number of rows deleted. If neither WHERE nor
ROWS is present, DELETE removes all the rows in the relation.

Syntax.

DELETE
 [TRANSACTION name]
 FROM {tablename | viewname} [[AS] alias]
 [WHERE {search-conditions | CURRENT OF cursorname}]
 [PLAN plan_items]
 [ORDER BY sort_items]
 [ROWS <m> [TO <n>]]
 [RETURNING <values> [INTO <variables>]]

<m>, <n> ::= Any expression evaluating to an integer.
<values> ::= value_expression [, value_expression ...]
<variables> ::= :varname [, :varname ...]

Restrictions

• The TRANSACTION directive is only available in ESQL.
• In a pure DSQL session, WHERE CURRENT OF isn't of much use,

since there exists no DSQL statement to create a cursor.
• The PLAN, ORDER BY and ROWS clauses are not available in

ESQL.
• The RETURNING clause is not available in ESQL.
• The “INTO <variables>” subclause is only available in PSQL.
• When returning values into the context variable NEW, this name

must not be preceded by a colon (write NEW, not :NEW).

Aliases
Description. An alias can represent a relation throughout the statement. Attention: the alias
obscures the formal relation name. Once declared, you must use either the alias or nothing to qualify
field names, as the examples show.

Examples.

Supported usage:

delete from Cities where name starting 'Alex'

delete from Cities where Cities.name starting 'Alex'

delete from Cities C where name starting 'Alex'

delete from Cities C where C.name starting 'Alex'

Not possible:

delete from Cities C where Cities.name starting 'Alex'

DML statements

15

TRANSACTION
Available in. ESQL

Description. The optional TRANSACTION clause specifies under which active transaction the
statement should be executed.

Example.

delete transaction tr_cleanup from Buses where date_endlife is not null

WHERE
Description. A WHERE clause limits the deletion to the rows matching the search condition, or –
in ESQL and PSQL only – to the current row of a named cursor.

Examples.

delete from People where firstname <> 'Boris' and lastname <> 'Johnson'

delete from Cities where current of Cur_Cities; -- ESQL and PSQL only

A delete using WHERE CURRENT OF is called a positioned delete, because it deletes the record at
the current position. A delete using “WHERE <condition>” is called a searched delete, because
the engine has to search for the record(s) meeting the condition.

PLAN
Available in. DSQL, PSQL

Description. A PLAN clause allows the user to optimize the operation manually.

Example.

delete from Submissions
 where date_entered < '1-Jan-2002'
 plan (Submissions index ix_subm_date)

ORDER BY
Available in. DSQL, PSQL

Description. The ORDER BY clause orders the set before the actual deletion takes place. It only
makes sense in combination with ROWS, but is also valid without it.

Examples.

delete from Purchases order by date rows 1 -- deletes oldest purchase

delete from Sales order by custno desc rows 1 to 10 -- deletes from highest custno(s)

delete from Sales order by custno desc -- deletes all sales, ORDER BY clause pointless

ROWS
Available in. DSQL, PSQL

Description. Limits the amount of rows deleted to a specified number or range.

Syntax.

DML statements

16

ROWS <m> [TO <n>]

<m>, <n> ::= Any expression evaluating to an integer.

With a single argument m, the deletion is limited to the first m rows of the dataset defined by the table
or view and the optional WHERE and ORDER BY clauses.

Points to note:

• If m > the total number of rows in the dataset, the entire set is deleted.
• If m = 0, no rows are deleted.
• If m < 0, an error is raised.

With two arguments m and n, the deletion is limited to rows m to n inclusively. Row numbers are
1-based.

Points to note when using two arguments:

• If m > the total number of rows in the dataset, no rows are deleted.
• If m lies within the set but n doesn't, the rows from m to the end of the set are deleted.
• If m < 1 or n < 1, an error is raised.
• If n = m-1, no rows are deleted.
• If n < m-1, an error is raised.

Examples.

delete from popgroups order by name desc rows 1 -- will probably delete ZZ Top

delete from popgroups order by formed rows 5 -- deletes 5 oldest groups

delete from popgroups rows 5 to 12 -- no ordering, may delete any 8 groups

RETURNING
Available in. DSQL, PSQL

Description. A DELETE statement removing at most one row may optionally include a
RETURNING clause in order to return values from the deleted row. The clause, if present, need not
contain all the relation's columns and may also contain other columns or expressions. When returning
into the NEW context variable within a trigger, the preceding colon must be omitted.

Examples.

delete from Scholars
 where firstname = 'Henry' and lastname = 'Higgins'
 returning lastname, fullname, id

delete from Dumbbells
 order by iq desc
 rows 1
 returning lastname, iq into :lname, :iq;

delete from TempSales ts
 where ts.id = tempid
 returning ts.qty into new.qty; -- not “:new.qty”

Notes.

• In DSQL, a statement with a RETURNING clause always returns exactly one row. If no record was
actually deleted, the fields in this row are all NULL. This behaviour may change in a later version
of Firebird.

DML statements

17

• In PSQL, if no row was deleted, nothing is returned, and the target variables keep their existing
values.

EXECUTE BLOCK
Available in. DSQL

Description. Executes a block of PSQL code as if it were a stored procedure, optionally with input
and output parameters and variable declarations. This allows the user to perform “on-the-fly” PSQL
within a DSQL context.

Syntax.

EXECUTE BLOCK [(<inparams>)]
 [RETURNS (<outparams>)]
AS
 [<declarations>]
BEGIN
 [<PSQL statements>]
END

<inparams> ::= <param_decl> = ? [, <inparams>]
<outparams> ::= <param_decl> [, <outparams>]
<param_decl> ::= paramname <type> [NOT NULL] [COLLATE collation]
<type> ::= sql_datatype | [TYPE OF] domain | TYPE OF COLUMN rel.col
<declarations> ::= See PSQL::DECLARE for the exact syntax
<PSQL statements> ::= See the PSQL chapter

Examples.

This example injects the numbers 0 through 127 and their corresponding ASCII
characters into the table ASCIITABLE:

execute block
as
declare i int = 0;
begin
 while (i < 128) do
 begin
 insert into AsciiTable values (:i, ascii_char(:i));
 i = i + 1;
 end
end

The next example calculates the geometric mean of two numbers and returns it to
the user:

execute block (x double precision = ?, y double precision = ?)
returns (gmean double precision)
as
begin
 gmean = sqrt(x*y);
 suspend;
end

Because this block has input parameters, it has to be prepared first. Then the
parameters can be set and the block executed. It depends on the client software how
this must be done and even if it is possible at all – see the notes below.

DML statements

18

Our last example takes two integer values, smallest and largest. For all the
numbers in the range smallest .. largest, the block outputs the number itself,
its square, its cube and its fourth power.

execute block (smallest int = ?, largest int = ?)
returns (number int, square bigint, cube bigint, fourth bigint)
as
begin
 number = smallest;
 while (number <= largest) do
 begin
 square = number * number;
 cube = number * square;
 fourth = number * cube;
 suspend;
 number = number + 1;
 end
end

Again, it depends on the client software if and how you can set the parameter values.

Input and output parameters
Executing a block without input parameters should be possible with every Firebird client that allows
the user to enter his or her own DSQL statements. If there are input parameters, things get trickier: these
parameters must get their values after the statement is prepared but before it is executed. This requires
special provisions, which not every client application offers. (Firebird's own isql, for one, doesn't.)

The server only accepts question marks (“?”) as placeholders for the input values, not “:a”,
“:MyParam” etc., or literal values. Client software may support the “:xxx” form though, and will
preprocess it before sending it to the server.

If the block has output parameters, you must use SUSPEND or nothing will be returned.

Output is always returned in the form of a result set, just as with a SELECT statement. You can't use
RETURNING_VALUES or execute the block INTO some variables, even if there is only one result
row.

For more information about parameter and variable declarations, [TYPE OF] domain, TYPE OF
COLUMN etc., consult the chapter on Procedural SQL, in particular PSQL::DECLARE.

Statement terminators
Some clients, especially those allowing the user to submit several statements at once, may require you
to surround the EXECUTE BLOCK statement with SET TERM lines, like this:

set term #;
execute block (...)
as
begin
 statement1;
 statement2;
end
#
set term ;#

As an example, in Firebird's isql client you must set the terminator to something other than “;” before
you type in the EXECUTE BLOCK statement. If you don't, isql will try to execute the part you have
typed so far as soon as you hit Enter after a line with a semicolon.

DML statements

19

EXECUTE PROCEDURE
Available in. DSQL, ESQL, PSQL

Description. Executes a stored procedure (SP), optionally taking input parameters and/or returning
output values.

Syntax.

EXECUTE PROCEDURE
 [TRANSACTION transaction]
 procname
 [<in_item> [, <in_item> ...]]
 [RETURNING_VALUES <out_item> [, <out_item> ...]]

<in_item> ::= <inparam> [<nullind>]
<out_item> ::= <outvar> [<nullind>]
<inparam> ::= an expression evaluating to the declared parameter type
<outvar> ::= a host language or PSQL variable to receive the return value
<nullind> ::= [INDICATOR]:host_lang_intvar

Notes

• In ESQL, input parameters must be literals or host language
variables. For output parameters, host variables must be specified in
the RETURNING_VALUES clause. NULL indicators must be host
language variables of type integer, with less than zero indicating
NULL and zero or greater indicating not NULL (which means that a
proper value is present in the corresponding parameter).

• In PSQL, input parameters may be any expression that resolves to
the expected type. For output parameters, local variables must be
specified in the RETURNING_VALUES clause.

• In DSQL, input parameters may be any expression that resolves to
the expected type. The handling of output parameters depends on
the client software.

• In PSQL and DSQL, NULL indicators are neither valid nor
necessary. NULLs are passed via the input/output parameters
themselves.

• TRANSACTION clauses are not supported in PSQL.

• In ESQL, variable names used as parameters or outvars must be
preceded by a colon (“:”). In PSQL the colon is generally optional,
but forbidden for the trigger context variables OLD and NEW.

Examples.

In PSQL (with optional colons):

execute procedure MakeFullName
 :FirstName, :MiddleName, :LastName
 returning_values :FullName;

The same call in ESQL (with obligatory colons):

exec sql

DML statements

20

 execute procedure MakeFullName
 :FirstName, :MiddleName, :LastName
 returning_values :FullName;

...and in Firebird's command-line utility isql (with literal parameters):

execute procedure MakeFullName
 'J', 'Edgar', 'Hoover';

Note: In isql, don't use RETURNING_VALUES. Any output values are shown
automatically.

Finally, a PSQL example with expression parameters:

execute procedure MakeFullName
 'Mr./Mrs. ' || FirstName, MiddleName, upper(LastName)
 returning_values FullName;

INSERT
Available in. DSQL, ESQL, PSQL

Description. Adds rows to a database table or to one or more tables underlying a view. If the field
values are given in a VALUES clause, exactly one row is inserted. The values may also be provided
by a SELECT statement, in which case zero to many rows may be inserted. With the DEFAULT
VALUES clause, no values are provided at all and exactly one row is inserted.

Syntax.

INSERT [TRANSACTION name]
 INTO {tablename | viewname}
 {DEFAULT VALUES | [(<column_list>)] <value_source>}
 [RETURNING <value_list> [INTO <variables>]]

<column_list> ::= colname [, colname ...]
<value_source> ::= VALUES (<value_list>) | <select_stmt>
<value_list> ::= value_expression [, value_expression ...]
<variables> ::= :varname [, :varname ...]
<select_stmt> ::= a SELECT or UNION whose result set fits the target columns

Restrictions

• The TRANSACTION directive is only available in ESQL.
• The RETURNING clause is not available in ESQL.
• The “INTO <variables>” subclause is only available in PSQL.
• When returning values into the context variable NEW, this name

must not be preceded by a colon (“:”).
• No column may appear more than once in the column list.

INSERT ... VALUES
The VALUES list must provide a value for every column in the column list, in the same order and of
the correct type. If the column list is absent, values must be provided for every column in the table
or view (computed columns excluded).

String literals may optionally be preceded by a character set name, using introducer syntax, in order
to let the engine know how to interpret the input.

Examples.

DML statements

21

insert into cars (make, model, year)
 values ('Ford', 'T', 1908)

insert into cars
 values ('Ford', 'T', 1908, 'USA', 850)

/* assuming that the columns of table Cars are: make, model, year, country, price */

insert into People
 values (_ISO8859_1 'Hans-Jörg Schäfer') -- notice the '_' prefix

INSERT ... SELECT
Here, the output columns of the SELECT statement must provide a value for every target column in
the column list, in the same order and of the correct type. If the column list is absent, values must be
provided for every column in the table or view (computed columns excluded).

Examples.

insert into cars (make, model, year)
 select (make, model, year) from new_cars

insert into cars
 select * from new_cars

/* assuming that table New_cars has the exact same columns as table Cars */

insert into Members (number, name)
 select number, name from NewMembers where Accepted = 1
 union
 select number, name from SuspendedMembers where Vindicated = 1

Of course, the column names in the source table need not be the same as those in the target table.
Any type of SELECT statement is permitted, as long as its output columns exactly match the insert
columns in number, order and type. Types need not be exactly the same, but they must be assignment-
compatible.

INSERT ... DEFAULT VALUES
The DEFAULT VALUES clause allows insertion of a record without providing any values at all,
neither directly nor from a SELECT statement. This is only possible if every NOT NULL or CHECKed
column in the table either has a valid default declared or gets such a value from a BEFORE INSERT
trigger. Furthermore, triggers providing required field values must not depend on the presence of input
values.

Example.

insert into journal default values
 returning entry_id

The RETURNING clause
An INSERT statement adding at most one row may optionally include a RETURNING clause in order
to return values from the inserted row. The clause, if present, need not contain all of the insert columns
and may also contain other columns or expressions. The returned values reflect any changes that may
have been made in BEFORE triggers, but not those in AFTER triggers.

Examples.

DML statements

22

insert into Scholars (firstname, lastname, address, phone, email)
 values ('Henry', 'Higgins', '27A Wimpole Street', '3231212', null)
 returning lastname, fullname, id

insert into Dumbbells (firstname, lastname, iq)
 select fname, lname, iq from Friends order by iq rows 1
 returning id, firstname, iq into :id, :fname, :iq;

Notes.

• RETURNING is only supported for VALUES inserts and singleton SELECT inserts.

• In DSQL, a statement with a RETURNING clause always returns exactly one row. If no record
was actually inserted, the fields in this row are all NULL. This behaviour may change in a later
version of Firebird. In PSQL, if no row was inserted, nothing is returned, and the target variables
keep their existing values.

• The RETURNING clause is not available in ESQL.

Inserting into BLOB columns
Inserting into BLOB columns is only possible under the following circumstances:

1. The client application has made special provisions for such inserts, using the Firebird API. In this
case, the modus operandi is application-specific and outside the scope of this manual.

2. The value inserted is a text string of at most 32767 bytes. Please notice: if the value is not a string
literal, beware of concatenations, as these may exceed the maximum length.

3. You are using the “INSERT ... SELECT” form and one or more columns in the result set are BLOBs.

4. You use the INSERT CURSOR statement (ESQL only).

INSERT CURSOR
Available in. ESQL

Description. In Embedded SQL only, you can insert data, in segment-sized chunks, into a BLOB
through a special BLOB cursor. As you can only write one segment at a time, this is usually done in
a (host language) loop.

Syntax.

INSERT CURSOR blobcursor VALUES (:buf [INDICATOR] :size)

blobcursor ::= an opened BLOB insert cursor
buf ::= host variable containing the data segment
size ::= data size in bytes; must be less than or equal to the segment length

Example.

exec sql
 insert cursor cur_jpeg values (:imgbuf indicator :seglen);

Please notice that, unlike INSERT, INSERT CURSOR does not write anything to the table itself.
The segments are written to a BLOB structure which, at that time, “floats” freely in the database,
unconnected to any other object.

After inserting all the segments in this manner, you must close the BLOB cursor and perform a regular
INSERT statement to insert the BLOB ID (and possibly other fields) into the table.

DML statements

23

Updating BLOB fields is done in the same way, except that you finalize the entire operation by issuing
a regular UPDATE statement instead of an INSERT statement.

A complete discussion of ESQL statements is outside the scope of this document. For more information
about ESQL, please consult the InterBase 6 Embedded SQL Guide (google for 60EmbedSQL.zip).

MERGE
Available in. DSQL, PSQL

Description. Merges data into a table or updatable view. The source may a table, view or “anything
you can SELECT from” in general. Each source record will be used to update one or more target
records, insert a new record in the target table, or neither. The action taken depends on the provided
condition and the WHEN clause(s). The condition will typically contain a comparison of fields in the
source and target relations.

Syntax.

MERGE INTO target [[AS] target-alias]
 USING source [[AS] source-alias]
 ON condition
 WHEN MATCHED THEN UPDATE SET colname = value [, colname = value ...]
 WHEN NOT MATCHED THEN INSERT [(<columns>)] VALUES (<values>)

target ::= a table or updatable view
source ::= a table, GTT, view, selectable SP, derived table or CTE
<columns> ::= colname [, colname ...]
<values> ::= value [, value ...]

Note: It is allowed to provide only one of the WHEN clauses

Examples.

merge into books b
 using purchases p
 on p.title = b.title and p.type = 'bk'
 when matched then
 update set b.desc = b.desc || '; ' || p.desc
 when not matched then
 insert (title, desc, bought) values (p.title, p.desc, p.bought)

merge into customers c
 using (select * from customers_delta where id > 10) cd
 on (c.id = cd.id)
 when matched then update set name = cd.name
 when not matched then insert (id, name) values (cd.id, cd.name)

Note

WHEN NOT MATCHED should be seen from the point of view of the source (the
relation in the USING clause). That is: if a source record doesn't have a match in the target
table, the INSERT clause is executed. Conversely, records in the target table without a
matching source record don't cause anything to happen.

Warning

If the WHEN MATCHED clause is present and multiple source records match the same
record(s) in the target table, the UPDATE clause is executed for all the matching source

DML statements

24

records, each update overwriting the previous one. This is non-standard behaviour:
SQL-2003 specifies that an exception must be raised in such cases.

SELECT
Available in. DSQL, ESQL, PSQL

The SELECT statement retrieves data from the database and hands them to the application or the
enclosing SQL statement. Data are returned in zero or more rows, each containing one or more columns
or fields. The total of rows returned is the result set of the statement.

Global syntax.

SELECT
 [TRANSACTION name]
 [FIRST <m>] [SKIP <n>]
 [DISTINCT | ALL] <columns>
 [INTO <host-varlist>]
 FROM source [[AS] alias]
 [<joins>]
 [WHERE <condition>]
 [GROUP BY <grouping-list>
 [HAVING <aggregate-condition>]]
 [PLAN <plan-expr>]
 [UNION [DISTINCT | ALL] <other-select>]
 [ORDER BY <ordering-list>]
 [ROWS m [TO n]]
 [FOR UPDATE [OF <columns>]]
 [WITH LOCK]
 [INTO <PSQL-varlist>]

The only mandatory parts of the SELECT statement are:

• The SELECT keyword, followed by a columns list. This part specifies what you want to retrieve.

• The FROM keyword, followed by a selectable object. This tells the engine where you want to get
it from.

In its most basic form, SELECT retrieves a number of columns from a single table or view, like this:

select id, name, address
 from contacts

Or, to retrieve all the columns:

select * from sales

In practice, the rows retrieved are often limited by a WHERE clause. The result set may be sorted
by an ORDER BY clause, and FIRST, SKIP or ROWS may further limit the number of output rows.
The column list may contain all kinds of expressions instead of just column names, and the source
need not be a table or view: it may also be a derived table, a common table expression (CTE) or a
selectable stored procedure (SP). Multiple sources may be combined in a JOIN, and multiple result
sets may be combined in a UNION.

The following sections discuss the available SELECT subclauses and their usage in detail.

The TRANSACTION directive
Available in. ESQL

DML statements

25

This ESQL-only directive tells the engine to execute the statement under the specified transaction,
which must have been previously declared and opened, e.g.:

select transaction tr_getsales
 partno, desc, price, amount
 from v_sales
 where custno = 101

FIRST, SKIP and ROWS
Available in. DSQL, PSQL

Syntax.

SELECT
 [FIRST <m>] [SKIP <n>]
 FROM ...
 ...

<m>, <n> ::= integer-literal | query-parameter | (integer-expression)

or

SELECT
 ...
 FROM ...
 ...
 ROWS m [TO n]

m, n ::= integer-expression

Please notice: FIRST and SKIP are Firebird-specific, non-SQL-compliant
keywords. You are adviced to use the ROWS syntax wherever possible.

FIRST limits the output of a query to the first so-many rows. SKIP will suppress the given number
of rows before starting to return output.

FIRST and SKIP are both optional. When used together as in “FIRST m SKIP n”, the n topmost rows
of the output set are discarded and the first m rows of the remainder are returned.

SKIP 0 is allowed, but of course rather pointless. FIRST 0 is also allowed and returns an empty set.
Negative SKIP and/or FIRST values result in an error.

If a SKIP lands past the end of the dataset, an empty set is returned. If the number of rows in the dataset
(or the remainder after a SKIP) is less than the value given after FIRST, that smaller number of rows
is returned. These are valid results, not error conditions.

Any argument to FIRST and SKIP that is not an integer literal or an SQL parameter must be enclosed
in parentheses. This implies that a subselect must be enclosed in two pairs of parentheses.

Examples

The following query will return the first 10 names from the People table:

select first 10 id, name from People
 order by name asc

The following query will return everything but the first 10 names:

select skip 10 id, name from People
 order by name asc

DML statements

26

And this one returns the last 10 rows. Notice the double parentheses:

select skip ((select count(*) - 10 from People))
 id, name from People
 order by name asc

This query returns rows 81–100 of the People table:

select first 20 skip 80 id, name from People
 order by name asc

As said, FIRST and SKIP are not standard SQL. In new code, it's better to use the standards-compliant
ROWS keyword.

Contrary to FIRST and SKIP, ROWS accepts any kind of integer expression as argument without
parentheses. (Of course, parentheses may be necessary within the expression, and a subselect still
needs to be parenthesized.)

With a single argument m, ROWS returns the first m rows of the dataset.

Points to note:

• If m > the total number of rows in the dataset, the entire set is returned.
• If m = 0, an empty set is returned.
• If m < 0, an error is raised.

With two arguments m and n, rows m to n of the dataset are returned, inclusively. Row numbers are
1-based.

Points to note when using two arguments:

• If m > the total number of rows in the dataset, an empty set is returned.
• If m lies within the set but n doesn't, the rows from m to the end of the set are returned.
• If m < 1 or n < 1, an error is raised.
• If n = m-1, an empty set is returned.
• If n < m-1, an error is raised.

The SQL-compliant ROWS syntax obviates the need for FIRST and SKIP, except in one case: a SKIP
without FIRST, which returns the entire remainder of the set after skipping a given number of rows.
(Well, this is not entirely true. You can supply a second argument that you know is bigger than the
number of rows in the set, or request COUNT(*) with a subselect. But SKIP is simpler and clearer
here.)

You cannot use ROWS together with FIRST and/or SKIP in a single SELECT statement, but you
can use one form in the top-level statement and the other in subselects, or use the two syntaxes in
different subselects.

When used with a UNION, the ROWS subclause applies to the UNION as a whole and must be placed
after the last SELECT. If you want to limit the output of one or more individual SELECTs within
the UNION, you have two options: either use FIRST/SKIP on those SELECT statements (probably
of limited use, as you can't use ORDER BY on individual selects within a union), or convert them to
derived tables with ROWS clauses.

Below are the previous examples rewritten using ROWS. Notice that ROWS is placed at or near the
end of the statement, whereas FIRST and SKIP come even before the columns list.

select id, name from People
 order by name asc
 rows 1 to 10

select id, name from People
 order by name asc

DML statements

27

 rows 11 to (select count(*) from People)

select id, name from People
 order by name asc
 rows (select count(*) - 9 from People)
 to (select count(*) from People)

select id, name from People
 order by name asc
 rows 81 to 100

Both FIRST/SKIP and ROWS can be used without an ORDER BY clause, but this rarely makes sense,
unless you want to just “get an idea” about a table without being interested in the actual data. In that
case, a statement like “select * from UnknownTable rows 20” may give you a quick insight without
risking lots of network traffic and thousands of data rows flying across your screen.

The column list
The column list contains one or more comma-separated value expressions. Each expression provides
a value for one output column, except * (“star”), which stands for all the columns in a relation (i.e.
a table, view or selectable stored procedure).

Syntax.

SELECT
 [...]
 [DISTINCT | ALL] <output-column> [, <output-column> ...]
 [...]
 FROM ...

<output-column> ::= [qualifier.]*
 | <value-expression> [COLLATE collation] [[AS] alias]

<value-expression> ::= [qualifier.]table-column
 | [qualifier.]view-column
 | [qualifier.]selectable-SP-outparm
 | constant
 | context-variable
 | function-call
 | single-value-subselect
 | CASE-construct
 | “any other expression returning a single
 value of a Firebird data type or NULL”

qualifier ::= a relation name or alias
collation ::= a valid collation name (only for character type columns)

It is always valid to qualify a column name (or “*”) with the name or alias of the table, view or
selectable SP to which it belongs, followed by a dot. Qualifying becomes mandatory if the column
name occurs in more than one relation taking part in a join. Qualifying “*” is mandatory if it isn't the
only item in the column list.

Please notice that aliases obfuscate the original relation name: once a table, view or SP has been
aliased, you can only use the alias as a qualifier; the relation name itself has become unavailable.

The column list may optionally be preceded by one of the keywords DISTINCT or ALL. DISTINCT
filters out any duplicate rows. That is, if two or more rows have the same values in every corresponding
column, only one of them is included in the result set. ALL shows all the rows including duplicates.
ALL is the default and therefore rarely used; it is supported for reasons of SQL compliance.

DML statements

28

A COLLATE clause will not change the appearance of the column as such. However, if the specified
collation changes the case or accent sensitivity of the column, it may influence:

• The ordering, if an ORDER BY clause is also present and the column is involved in it.
• Grouping, if the column is part of a GROUP BY clause.
• The rows retrieved (and hence the total number of rows in the result set), if DISTINCT is used.

Examples of SELECT queries with different types of column lists

A simple SELECT using only column names:

select cust_id, cust_name, phone
 from customers
 where city = 'London'

A query featuring a concatenation expression and a function call in the columns list:

select 'Mr./Mrs. ' || lastname, street, zip, upper(city)
 from contacts
 where date_last_purchase(id) = current_date

A query with two subselects:

select p.fullname,
 (select name from classes c where c.id = p.class) as class,
 (select name from mentors m where m.id = p.mentor) as mentor
from pupils p

The following query accomplishes the same as the previous one using joins instead of subselects:

select p.fullname,
 c.name as class,
 m.name as mentor
from pupils p
 join classes c on c.id = p.class
 join mentors m on m.id = p.mentor

This query uses a CASE construct to determine the correct title, e.g. when sending mail to a person:

select case upper(sex)
 when 'F' then 'Mrs.'
 when 'M' then 'Mr.'
 else ''
 end as title,
 lastname,
 address
from employees

Querying a selectable stored procedure:

select * from interesting_transactions(2010, 3, 'S')
 order by amount

Selecting from columns of a derived table. A derived table is a parenthesized SELECT statement
whose result set is used in an enclosing query as if it were a regular table or view. The derived table
is shown in bold here:

select fieldcount,
 count(relation) as num_tables
from (select r.rdb$relation_name as relation,
 count(*) as fieldcount

DML statements

29

 from rdb$relations r
 join rdb$relation_fields rf
 on rf.rdb$relation_name = r.rdb$relation_name
 group by relation)
group by fieldcount

Asking the time through a context variable (CURRENT_TIME):

select current_time from rdb$database

For those not familiar with RDB$DATABASE: this is a system table that is present in all Firebird
databases and is guaranteed to contain exactly one row. Although it wasn't created for this purpose,
it has become standard practice among Firebird programmers to select from this table if you want to
select “from nothing”, i.e., if you need data that are not bound to a any table or view, but can be derived
from the expressions in the output columns alone. Another example is:

select power(12, 2) as twelve_squared, power(12, 3) as twelve_cubed
 from rdb$database

Finally, an example where you select some meaningful information from RDB$DATABASE itself:

select rdb$character_set_name from rdb$database

As you may have guessed, this will give you the default character set of the database.

Selecting INTO variables
Available in. ESQL, PSQL

In PSQL code or embedded SQL, the results of a SELECT statement may be loaded – on a row-by-
row basis – into local variables (PSQL) or host languages variables (ESQL). In fact, this is often the
only way to do anything with the returned values at all. The number, order and types of the variables
must match the columns in the output row.

A “plain” SELECT statement can only be used in ESQL or PSQL if it returns at most one row – in
other words, if it is a singleton select. For multirow selects, PSQL provides the FOR SELECT loop,
which is discussed in the PSQL chapter. In addition, both PSQL and ESQL support the DECLARE
CURSOR statement, which binds a named cursor to a SELECT statement. The cursor can then be
used to walk the result set.

Syntax. In embedded SQL, the INTO clause is placed between the column list and the FROM
keyword:

SELECT
 [...]
 <column-list>
 [INTO <variable-list>]
 FROM ...
 [...]

<variable-list> ::= :hostvar [, :hostvar ...]

In PSQL, the INTO clause must appear at the very end of the statement:

SELECT
 [...]
 <column-list>
 FROM ...
 [...]
 [INTO <variable-list>]

DML statements

30

<variable-list> ::= [:]psqlvar [, [:]psqlvar ...]

Notice that in PSQL, the colons before the variable names are optional.

Examples

In ESQL, with min_amt, avg_amt and max_amt host language (e.g. C) variables:

select min(amount), avg(cast(amount as float)), max(amount)
 into :min_amt, :avg_amt, :max_amt
 from orders
 where artno = 372218;

In PSQL, with min_amt, avg_amt and max_amt previously defined PSQL variables or output
parameters:

select min(amount), avg(cast(amount as float)), max(amount)
 from orders
 where artno = 372218
 into min_amt, avg_amt, max_amt;

(The CAST serves to make the average a broken number. Otherwise – since amount is presumably
an integer field – it would be truncated to the nearest lower integer.)

In a PSQL trigger:

select list(name, ', ')
 from persons p
 where p.id in (new.father, new.mother)
 into new.parentnames;

The FROM clause
The FROM clause specifies the source(s) from which the data are to be retrieved. In its simplest form,
this is just a single table or view. But the source can also be a selectable stored procedure, a derived
table or a common table expression. Multiple sources can be combined using various types of joins.

This section concentrates on single-source selects. Joins are discussed in the next section.

Syntax.

SELECT
 ...
 FROM <source>
 [<joins>]
 [...]

<source> ::= {table
 | view
 | selectable-stored-procedure [(args)]
 | <derived-table>
 | <common-table-expression>}
 [[AS] alias]

<derived-table> ::= (select-statement) [[AS] alias]
 [(<column-aliases>)]

<common-table-expression>
 ::= WITH [RECURSIVE] <cte-def> [, <cte-def> ...]

DML statements

31

 select-statement

<cte-def> ::= name [(<column-aliases>)] AS (select-statement)

<column-aliases> ::= column-alias [, column-alias ...]

Selecting from a table or view

When selecting from a single table or view, the FROM clause need not contain anything more than
the name. An alias may be useful or even necessary if there are subselects that refer to the main select
statement (as they often do – subqueries like this are called correlated subqueries).

Examples

select id, name, sex, age from actors
 where state = 'Ohio'

select * from birds
 where type = 'flightless'
 order by family, genus, species

select firstname,
 middlename,
 lastname,
 date_of_birth,
 (select name from schools s where p.school = s.id) schoolname
from pupils p
where year_started = '2012'
order by schoolname, date_of_birth

Selecting from a stored procedure

A selectable stored procedure is a procedure that:

• contains at least one output parameter, and
• utilizes the SUSPEND keyword so the caller can fetch the output rows one by one, just as when

selecting from a table or view.

The output parameters of a selectable stored procedure correspond to the columns of a regular table.

Selecting from a stored procedure without input parameters is just like selecting from a table or view:

select * from suspicious_transactions
 where assignee = 'John'

Any required input parameters must be specified after the procedure name, enclosed in parentheses:

select name, az, alt from visible_stars('Brugge', current_date, '22:30')
 where alt >= 20
 order by az, alt

Values for optional parameters (that is, parameters for which default values have been defined) may
be omitted or provided. However, if you provide them only partly, the parameters you omit must all
be at the tail end.

Supposing that the procedure visible_stars from the previous example has two optional
parameters: min_magn (numeric(3,1)) and spectral_class (varchar(12)), the following queries
are all valid:

select name, az, alt from visible_stars('Brugge', current_date, '22:30')

DML statements

32

select name, az, alt from visible_stars('Brugge', current_date, '22:30', 4.0)
select name, az, alt from visible_stars('Brugge', current_date, '22:30', 4.0, 'G')

But this one isn't, because there's a “hole” in the parameter list:

select name, az, alt from visible_stars('Brugge', current_date, '22:30', 'G')

An alias for a selectable stored procedure is specified after the parameter list:

select number,
 (select name from contestants c where c.number = gw.number)
from get_winners('#34517', 'AMS') gw

If you qualify a column (output parameter) with the full procedure name, don't include the parameter
list:

select number,
 (select name from contestants c where c.number = get_winners.number)
from get_winners('#34517', 'AMS')

Selecting from a derived table

A derived table is a valid SELECT statement enclosed in parentheses, optionally followed by a table
alias and/or column aliases. The result set of the statement acts as a virtual table which the enclosing
statement can query.

Derived tables are discussed in detail in the section Derived tables (“SELECT FROM SELECT”).
Here, we only give an example.

Suppose we have a table COEFFS which contains the coefficients of a number of quadratic equations
we have to solve. It has been defined like this:

create table coeffs (
 a double precision not null,
 b double precision not null,
 c double precision not null,
 constraint chk_a_not_zero check (a <> 0)
)

Depending on the values of a, b and c, each equation may have zero, one or two solutions in #. It
is possible to find these solutions with a single-level query on table COEFFS, but the code will look
rather messy and several values (like the discriminant) will have to be calculated multiple times per
row. A derived table can help keep things clean here:

select
 iif (D >= 0, (-b - sqrt(D)) / denom, null) sol_1,
 iif (D > 0, (-b + sqrt(D)) / denom, null) sol_2
 from
 (select b, b*b - 4*a*c, 2*a from coeffs) (b, D, denom)

If we want to show the coefficients next to the solutions (which may not be a bad idea), we can alter
the query like this:

select
 a, b, c,
 iif (D >= 0, (-b - sqrt(D)) / denom, null) sol_1,
 iif (D > 0, (-b + sqrt(D)) / denom, null) sol_2
 from
 (select a, b, c, b*b - 4*a*c as D, 2*a as denom
 from coeffs)

DML statements

33

Notice that whereas the first query used a column aliases list for the derived table, the second adds
aliases internally where needed. Both methods work, as long as every column is guaranteed to have
a name.

Selecting from a CTE

A common table expression or CTE is a more complex, but also more powerful type of derived table. A
preamble, starting with the keyword WITH, defines one or more named CTE's, each optionally with a
column aliases list. The main query, which follows the preamble, can then access these CTE's as if they
were regular tables or views. Once the main query has run to completion, the CTE's go out of scope.

For a full discussion of CTE's, please refer to the section Common Table Expressions (“WITH ... AS ...
SELECT”).

The following is a rewrite of our derived table example as a CTE:

with vars (b, D, denom) as (
 select b, b*b - 4*a*c, 2*a from coeffs
)
select
 iif (D >= 0, (-b - sqrt(D)) / denom, null) sol_1,
 iif (D > 0, (-b + sqrt(D)) / denom, null) sol_2
from vars

Except for the fact that the calculations that have to be made first are now at the beginning, this
isn't a great improvement over the derived table version. But we can now also eliminate the double
calculation of sqrt(D) for every row:

with vars (b, D, denom) as (
 select b, b*b - 4*a*c, 2*a from coeffs
),
vars2 (b, D, denom, sqrtD) as (
 select b, D, denom, iif (D >= 0, sqrt(D), null) from vars
)
select
 iif (D >= 0, (-b - sqrtD) / denom, null) sol_1,
 iif (D > 0, (-b + sqrtD) / denom, null) sol_2
from vars2

The code is a little more complicated now, but it might execute more efficiently (depending on what
takes more time: executing the SQRT function or passing the values of b, D and denom through an
extra CTE). Incidentally, we could have done the same with derived tables, but that would involve
nesting.

Joins
Joins combine data from two sources into a single set. This is done on a row-by-row basis and usually
involves the checking of a join condition in order to determine which rows should be merged and
appear in the resulting dataset. There are several types (INNER, OUTER) and classes (qualified,
natural, etc.) of joins, each with their own syntax and rules.

Since joins can be chained, the datasets involved in a join may themselves be joined sets.

Syntax.

SELECT
 ...
 FROM <source>
 [<joins>]

DML statements

34

 [...]

<source> ::= {table
 | view
 | selectable-stored-procedure [(args)]
 | derived-table
 | common-table-expression}
 [[AS] alias]

<joins> ::= <join> [<join> ...]

<join> ::= [<join-type>] JOIN <source> <join-condition>
 | NATURAL [<join-type>] JOIN <source>
 | {CROSS JOIN | ,} <source>

<join-type> ::= INNER | {LEFT | RIGHT | FULL} [OUTER]

<join-condition> ::= ON condition | USING (column-list)

Inner vs. outer joins

A join always combines data rows from two sets (usually referred to as the left set and the right set).
By default, only rows that meet the join condition (i.e., that match at least one row in the other set
when the join condition is applied) make it into the result set. This default type of join is called an
inner join. Suppose we have the following two tables:

Table A:

ID S

87 Just some text

235 Silence

Table B:

CODE X

-23 56.7735

87 416.0

If we join these tables like this:

select *
 from A
 join B on A.id = B.code

then the result set will be:

ID S CODE X

87 Just some text 87 416.0

The first row of A has been joined with the second row of B because together they met the condition
“A.id = B.code”. The other rows from the source tables have no match in the opposite set and are
therefore not included in the join. Remember, this is an INNER join. We can make that fact explicit
by writing:

select *
 from A
 inner join B on A.id = B.code

DML statements

35

However, since INNER is the default, this is rarely done.

It is perfectly possible that a row in the left set matches several rows from the right set or vice versa.
In that case, all those combinations are included, and we can get results like:

ID S CODE X

87 Just some text 87 416.0

87 Just some text 87 -1.0

-23 Don't know -23 56.7735

-23 Still don't know -23 56.7735

-23 I give up -23 56.7735

Sometimes we want (or need) all the rows of one or both of the sources to appear in the joined set,
regardless of whether they match a record in the other source. This is where outer joins come in. A
LEFT outer join includes all the records from the left set, but only matching records from the right set.
In a RIGHT outer join it's the other way around. FULL outer joins include all the records from both
sets. In all outer joins, the “holes” (the places where an included source record doesn't have a match
in the other set) are filled up with NULLs.

In order to make an outer join, you must specify LEFT, RIGHT or FULL, optionally followed by the
keyword OUTER.

Below are the results of the various outer joins when applied to our original tables A and B:

select *
 from A
 left [outer] join B on A.id = B.code

ID S CODE X

87 Just some text 87 416.0

235 Silence <null> <null>

select *
 from A
 right [outer] join B on A.id = B.code

ID S CODE X

<null> <null> -23 56.7735

87 Just some text 87 416.0

select *
 from A
 full [outer] join B on A.id = B.code

ID S CODE X

<null> <null> -23 56.7735

87 Just some text 87 416.0

235 Silence <null> <null>

Qualified joins

Qualified joins specify conditions for the combining of rows. This happens either explicitly in an ON
clause or implicitly in a USING clause.

DML statements

36

Syntax.

<qualified-join> ::= [<join-type>] JOIN <source> <join-condition>

<join-type> ::= INNER | {LEFT | RIGHT | FULL} [OUTER]

<join-condition> ::= ON condition | USING (column-list)

Explicit-condition joins

Most qualified joins have an ON clause, with an explicit condition that can be any valid boolean
expression but usually involves some comparison between the two sources involved.

Quite often, the condition is an equality test (or a number of ANDed equality tests) using the “=”
operator. Joins like these are called equi-joins. (The examples in the section on inner and outer joins
were al equi-joins.)

Examples of joins with an explicit condition:

/* Select all Detroit customers who made a purchase
 in 2013, along with the purchase details: */
select * from customers c
 join sales s on s.cust_id = c.id
 where c.city = 'Detroit' and s.year = 2013

/* Same as above, but include non-buying customers: */
select * from customers c
 left join sales s on s.cust_id = c.id
 where c.city = 'Detroit' and s.year = 2013

/* For each man, select the women who are taller than he.
 Men for whom no such woman exists are not included. */
select m.fullname as man, f.fullname as woman
 from males m
 join females f on f.height > m.height

/* Select all pupils with their class and mentor.
 Pupils without a mentor are also included.
 Pupils without a class are not included. */
select p.firstname, p.middlename, p.lastname,
 c.name, m.name
 from pupils p
 join classes c on c.id = p.class
 left join mentors m on m.id = p.mentor

Named columns joins

Equi-joins often compare columns that have the same name in both tables. If this is the case, we
can also use the second type of qualified join: the named columns join. Named columns joins have a
USING clause which states just the column names. So instead of this:

select * from flotsam f
 join jetsam j
 on f.sea = j.sea
 and f.ship = j.ship

we can also write:

select * from flotsam
 join jetsam using (sea, ship)

DML statements

37

which is considerably shorter. The result set is a little different though – at least when using “SELECT
*”:

• The explicit-condtion join – with the ON clause – will contain each of the columns SEA and SHIP
twice: once from table FLOTSAM, and once from table JETSAM. Obviously, they will have the
same values.

• The named columns join – with the USING clause – will contain these columns only once.

If you want all the columns in the result set of the named columns join, set up your query like this:

select f.*, j.*
 from flotsam f
 join jetsam j using (sea, ship)

This will give you the exact same result set as the explicit-condition join.

For an OUTER named columns join, there's an additional twist when using “SELECT *” or an
unqualified column name from the USING list:

If a row from one source set doesn't have a match in the other but must still be included because of the
LEFT, RIGHT or FULL directive, the merged column in the joined set gets the non-NULL value. That
is fair enough, but now you can't tell whether this value came from the left set, the right set, or both.
This can be especially deceiving when the value came from the right hand set, because “*” always
shows combined columns in the left hand part – even in the case of a RIGHT join.

Whether this is a problem or not depends on the situation. If it is, use the “a.*, b.*” approach shown
above, with a and b the names or aliases of the two sources. Or better yet, avoid “*” altogether in
your serious queries and qualify all column names in joined sets. This has the additional benefit that
it forces you to think about which data you want to retrieve and where from.

It is your responsibility to make sure that the column names in the USING list are of compatible types
between the two sources. If the types are compatible but not equal, the engine converts them to the
type with the broadest range of values before comparing the values. This will also be the data type of
the merged column that shows up in the result set if “SELECT *” or the unqualified column name is
used. Qualified columns on the other hand will always retain their original data type.

Natural joins

Taking the idea of the named columns join a step further, a natural join performs an automatic equi-
join on all the columns that have the same name in the left and right table. The data types of these
columns must be compatible.

Syntax.

<natural-join> ::= NATURAL [<join-type>] JOIN <source>

<join-type> ::= INNER | {LEFT | RIGHT | FULL} [OUTER]

Given these two tables:

create table TA (
 a bigint,
 s varchar(12),
 ins_date date
)

create table TB (
 a bigint,
 descr varchar(12),

DML statements

38

 x float,
 ins_date date
)

a natural join on TA and TB would involve the columns a and ins_date, and the following two
statements would have the same effect:

select * from TA
 natural join TB

select * from TA
 join TB using (a, ins_date)

Like all joins, natural joins are inner joins by default, but you can turn them into outer joins by
specifying LEFT, RIGHT or FULL before the JOIN keyword.

Caution: if there are no columns with the same name in the two source relations, a CROSS JOIN is
performed. We'll get to this type of join in a minute.

A note on equality

The “=” operator, which is explicitly used in many conditional joins and implicitly in named column
joins and natural joins, only matches values to values. According to the SQL standard, NULL is not
a value and hence two NULLs are neither equal nor unequal to one another. If you need NULLs to
match each other in a join, use the IS NOT DISTINCT FROM operator. This operator returns true if
the operands have the same value or if they are both NULL.

select *
 from A join B
 on A.id is not distinct from B.code

Likewise, in the – extremely rare – cases where you want to join on inequality, use IS DISTINCT
FROM, not “<>”, if you want NULL to be considered different from any value and two NULLs
considered equal:

select *
 from A join B
 on A.id is distinct from B.code

This note about equality and inequality operators applies everywhere in Firebird SQL, not only in
join conditions.

Cross joins

A cross join produces the full set product of the two data sources. This means that it successfully
matches every row in the left source to every row in the right source.

Syntax.

<cross-join> ::= {CROSS JOIN | ,} <source>

Please notice that the comma syntax is deprecated! It is only supported to keep legacy code working
and may disappear in some future version.

Cross-joining two sets is equivalent to joining them on a tautology (a condition that is always true).
The following two statements have the same effect:

select * from TA
 cross join TB

select * from TA

DML statements

39

 join TB on 1 = 1

Cross joins are inner joins, because they only include matching records – it just so happens that every
record matches! An outer cross join, if it existed, wouldn't add anything to the result, because what
outer joins add are non-matching records, and these don't exist in cross joins.

Cross joins are seldom useful, except if you want to list all the possible combinations of two or more
variables. Suppose you are selling a product that comes in different sizes, different colors and different
materials. If these variables are each listed in a table of their own, this query would return all the
combinations:

select m.name, s.size, c.name
 from materials m
 cross join sizes s
 cross join colors c

Ambiguous field names in joins

Firebird rejects unqualified field names in a query if these field names exist in more than one dataset
involved in a join. This is even true for inner equi-joins where the field name figures in the ON clause
like this:

select a, b, c
 from TA
 join TB on TA.a = TB.a

There is one exception to this rule: with named columns joins and natural joins, the unqualified field
name of a column taking part in the matching process may be used legally and refers to the merged
column of the same name. For named columns joins, these are the columns listed in the USING clause.
For natural joins, they are the columns that have the same name in both relations. But please notice
again that, especially in outer joins, plain colname isn't always the same as left.colname or
right.colname. Types may differ, and one of the qualified columns may be NULL while the other
isn't. In that case, the value in the merged, unqualified column may mask the fact that one of the source
values is absent.

The WHERE clause
The WHERE clause serves to limit the rows returned to the ones that the caller is interested in. The
condition following the keyword WHERE can be as simple as a check like “AMOUNT = 3” or it can be
a multilayered, convoluted expression containing subselects, predicates, function calls, mathematical
and logical operators, context variables and more.

The condition in the WHERE clause is often called the search condition, the search expression or
simply the search.

In DSQL and ESQL, the search expression may contain parameters. This is useful if a query has to be
repeated a number of times with different input values. In the SQL string as it is passed to the server,
question marks are used as placeholders for the parameters. They are called positional parameters
because they can only be told apart by their position in the string. Connectivity libraries often support
named parameters of the form :id, :amount, :a etc. These are more user-friendly; the library takes
care of translating the named parameters to positional parameters before passing the statement to the
server.

The search condition may also contain local (PSQL) or host (ESQL) variable names, preceded by a
colon.

Syntax.

SELECT ...
 FROM ...

DML statements

40

 [...]
 WHERE <search-condition>
 [...]

<search-condition> ::= a boolean expression returning
 TRUE, FALSE or possibly UNKNOWN (NULL)

Only those rows for which the search condition evaluates to TRUE are included in the result set. Be
careful with possible NULL outcomes: if you negate a NULL expression with NOT, the result will still
be NULL and the row will not pass. This is demonstrated in one of the examples below.

Examples

select genus, species from mammals
 where family = 'Felidae'
 order by genus

select * from persons
 where birthyear in (1880, 1881)
 or birthyear between 1891 and 1898

select name, street, borough, phone
 from schools s
 where exists (select * from pupils p where p.school = s.id)
 order by borough, street

select * from employees
 where salary >= 10000 and position <> 'Manager'

select name from wrestlers
 where region = 'Europe'
 and weight > all (select weight from shot_putters
 where region = 'Africa')

select id, name from players
 where team_id = (select id from teams where name = 'Buffaloes')

select sum (population) from towns
 where name like '%dam'
 and province containing 'land'

select password from usertable
 where username = current_user

The following example shows what can happen if the search condition evaluates to NULL.

Suppose you have a table listing some children's names and the number of marbles they possess. At
a certain moment, the table contains these data:

CHILD MARBLES

Anita 23

Bob E. 12

Chris <null>

Deirdre 1

Eve 17

Fritz 0

Gerry 21

DML statements

41

CHILD MARBLES

Hadassah <null>

Isaac 6

First, please notice the difference between NULL and 0: Fritz is known to have no marbles at all, Chris's
and Hadassah's marble counts are unknown.

Now, if you issue this SQL statement:

select list(child) from marbletable where marbles > 10

you will get the names Anita, Bob E., Eve and Gerry. These children all have more than 10 marbles.

If you negate the expression:

select list(child) from marbletable where not marbles > 10

it's the turn of Deirdre, Fritz and Isaac to fill the list. Chris and Hadassah are not included, because
they aren't known to have ten marbles or less. Should you change that last query to:

select list(child) from marbletable where marbles <= 10

the result will still be the same, because the expression NULL <= 10 yields UNKNOWN. This is not the
same as TRUE, so Chris and Hadassah are not listed. If you want them listed with the “poor” children,
change the query to:

select list(child) from marbletable where marbles <= 10 or marbles is null

Now the search condition becomes true for Chris and Hadassah, because “marbles is null”
obviously returns TRUE in their case. In fact, the search condition cannot be NULL for anybody now.

Lastly, two examples of SELECT queries with parameters in the search. It depends on the application
how you should define query parameters and even if it is possible at all. Notice that queries like these
cannot be executed immediately: they have to be prepared first. Once a parameterized query has been
prepared, the user (or calling code) can supply values for the parameters and have it executed many
times, entering new values before every call. How the values are entered and the execution started is
up to the application. In a GUI environment, the user typically types the parameter values in one or
more text boxes and then clicks an “Execute”, “Run” or “Refresh” button.

select name, address, phone frome stores
 where city = ? and class = ?

select * from pants
 where model = :model and size = :size and color = :col

The last query cannot be passed directly to the engine; the application must convert it to the other
format first, mapping named parameters to positional parameters.

The GROUP BY clause
GROUP BY merges output rows that have the same combination of values in its item list into a single
row. Aggregate functions in the select list are applied to each group individually instead of to the
dataset as a whole.

If the select list only contains aggregate columns – or, more generally, columns whose values don't
depend on individual rows in the underlying set – GROUP BY is optional. When omitted, the final
result set of will consist of a single row (provided that at least one aggregated column is present).

If the select list contains both aggregate columns and columns whose values may vary per row, the
GROUP BY clause becomes mandatory.

DML statements

42

Syntax.

SELECT ... FROM ...
 GROUP BY <grouping-item> [, <grouping-item> ...]
 [HAVING <grouped-row-condition>]
 ...

<grouping-item> ::= <non-aggr-select-item>
 | <non-aggr-expression>

<non-aggr-select-item> ::= column-copy
 | column-alias
 | column-position

<non-aggr-expression> ::= any non-aggregate expression that is not
 in the select list, e.g. unselected columns
 from the source set or expressions that
 don't depend on the data in the set at all

A general rule of thumb is that every non-aggregate item in the SELECT list must also be in the
GROUP BY list. You can do this in three ways:

1. By copying the item verbatim from the select list, e.g. “class” or “'D:' ||
upper(doccode)”.

2. By specifying the column alias, if it exists.

3. By specifying the column position as an integer literal between 1 and the number of columns.
Integer values resulting from expressions or parameter substitutions are simply invariables and will
be used as such in the grouping. They will have no effect though, as their value is the same for
each row.

Please notice: If you group by a column position, the expression at that position is copied internally
from the select list. If it concerns a subquery, that subquery will be executed at least twice.

In addition to the required items, the grouping list may also contain:

• Columns from the source table that are not in the select list, or non-aggregate expressions based on
such columns. Adding such columns may further subdivide the groups. But since these columns are
not in the select list, you can't tell which aggregated row corresponds to which value in the column.
So, in general, if you are interested in this information, you also include the column or expression
in the select list – which brings you back to the standard “every non-aggregate column in the select
list must also be in the grouping list” mantra.

• Expressions that aren't dependent on the data in the underlying set, e.g. constants, context variables,
single-value non-correlated subselects etc. This is only mentioned for completeness, as adding such
items is utterly pointless: they don't affect the grouping at all. “Harmless but useless” items like
these may also figure in the select list without being copied to the grouping list.

Examples

When the select list only contains aggregate columns, GROUP BY is not mandatory:

select count(*), avg(age) from students
 where sex = 'M'

This will return a single row listing the number of male students and their average age. Adding
expressions that don't depend on values in individual rows of table STUDENTS doesn't change that:

select count(*), avg(age), current_date from students

DML statements

43

 where sex = 'M'

The row will now have an extra column showing the current date, but other than that, nothing
fundamental has changed. A GROUP BY clause is still not required.

However, in both the above examples it is allowed. This is perfectly valid:

select count(*), avg(age) from students
 where sex = 'M'
 group by class

and will return a row for each class that has boys in it, listing the number of boys and their average
age in that particular class. (If you also leave the current_date field in, this value will be repeated
on every row, which is not very exciting.)

The above query has a major drawback though: it gives you information about the different classes,
but it doesn't tell you which row applies to which class. In order to get that extra bit of information,
the non-aggregate column CLASS must be added to the select list:

select class, count(*), avg(age) from students
 where sex = 'M'
 group by class

Now we have a useful query. Notice that the addition of column CLASS also makes the GROUP
BY clause mandatory. We can't drop that clause anymore, unless we also remove CLASS from the
column list.

The output of our last query may look something like this:

CLASS COUNT AVG

2A 12 13.5

2B 9 13.9

3A 11 14.6

3B 12 14.4

...

The headings “COUNT” and “AVG” are not very informative. In a simple case like this, you might get
away with that, but in general you should give aggregate columns a meaningful name by aliasing them:

select class,
 count(*) as num_boys,
 avg(age) as boys_avg_age
 from students
 where sex = 'M'
 group by class

As you may recall from the formal syntax of the columns list, the AS keyword is optional.

Adding more non-aggregate (or rather: row-dependent) columns requires adding them to the GROUP
BY clause too. For instance, you might want to see the above information for girls as well; and you
may also want to differentiate between boarding and day students:

select class,
 sex,
 boarding_type,
 count(*) as number,
 avg(age) as avg_age
 from students

DML statements

44

 group by class, sex, boarding_type

This may give you the following result:

CLASS SEX BOARDING_TYPENUMBER AVG_AGE

2A F BOARDING 9 13.3

2A F DAY 6 13.5

2A M BOARDING 7 13.6

2A M DAY 5 13.4

2B F BOARDING 11 13.7

2B F DAY 5 13.7

2B M BOARDING 6 13.8

...

Each row in the result set corresponds to one particular combination of the variables class, sex and
boarding type. The aggregate results – number and average age – are given for each of these rather
specific groups individually. In a query like this, you don't see a total for boys as a whole, or day
students as a whole. That's the tradeoff: the more non-aggregate columns you add, the more you can
pinpoint very specific groups, but the more you also lose sight of the general picture. Of course you
can still obtain the “coarser” aggregates through separate queries.

HAVING

Just as a WHERE clause limits the rows in a dataset to those that meet the search condition, so
the HAVING subclause imposes restrictions on the aggregated rows in a grouped set. HAVING is
optional, and can only be used in conjunction with GROUP BY.

The condition(s) in the HAVING clause can refer to:

• Any aggregated column in the select list. This is the most widely used alternative.

• Any aggregated expression that is not in the select list, but allowed in the context of the query. This
is sometimes useful too.

• Any column in the GROUP BY list. While legal, it is more efficient to filter on these non-aggregated
data at an earlier stage: in the WHERE clause.

• Any expression whose value doesn't depend on the contents of the dataset (like a constant or a
context variable). This is valid but utterly pointless, because it will either suppress the entire set or
leave it untouched, based on conditions that have nothing to do with the set itself.

A HAVING clause can not contain:

• Non-aggregated column expressions that are not in the GROUP BY list.

• Column positions. An integer in the HAVING clause is just an integer.

• Column aliases – not even if they appear in the GROUP BY clause!

Examples

Building on our earlier examples, this could be used to skip small groups of students:

select class,
 count(*) as num_boys,
 avg(age) as boys_avg_age
 from students

DML statements

45

 where sex = 'M'
 group by class
 having count(*) >= 5

To select only groups that have a minimum age spread:

select class,
 count(*) as num_boys,
 avg(age) as boys_avg_age
 from students
 where sex = 'M'
 group by class
 having max(age) - min(age) > 1.2

Notice that if you're really interested in this information, you'd normally include min(age) and
max(age) – or the expression “max(age) - min(age)” – in the select list as well!

To include only 3rd classes:

select class,
 count(*) as num_boys,
 avg(age) as boys_avg_age
 from students
 where sex = 'M'
 group by class
 having class starting with '3'

Better would be to move this condition to the WHERE clause:

select class,
 count(*) as num_boys,
 avg(age) as boys_avg_age
 from students
 where sex = 'M' and class starting with '3'
 group by class

The PLAN clause
The PLAN clause enables the user to submit a data retrieval plan, thus overriding the plan that the
optimizer would have generated automatically.

Syntax.

PLAN <plan-expr>

<plan-expr> ::= (<plan-item> [, <plan-item> ...])
 | <sorted-item>
 | <joined-item>
 | <merged-item>

<sorted-item> ::= SORT (<plan-item>)

<joined-item> ::= JOIN (<plan-item>, <plan-item> [, <plan-item> ...])

<merged-item> ::= [SORT] MERGE (<sorted-item>, <sorted-item> [, <sorted-item> ...])

<plan-item> ::= <basic-item> | <plan-expr>

<basic-item> ::= <relation>

DML statements

46

 {NATURAL
 | INDEX (<indexlist>)
 | ORDER index [INDEX (<indexlist>)]}

<relation> ::= table
 | view [table] -- en een SP, CTE of derived table?

<indexlist> ::= index [, index ...]

table, view ::= name or alias

Every time a user submits a query to the Firebird engine, the optimizer computes a data retrieval
strategy. Most Firebird clients can make this retrieval plan visible to the user. In Firebird's own isql
utility, this is done with the command SET PLAN ON. If you are studying query plans rather than
running queries, SET PLANONLY ON will show the plan without executing the query.

In most situations, you can trust that Firebird will select the optimal query plan for you. However, if
you have complicated queries that seem to be underperforming, it may very well be worth your while
to examine the plan and see if you can improve on it.

Simple plans

The simplest plans consist of just a relation name followed by a retrieval method. E.g., for an unsorted
single-table select without a WHERE clause:

select * from students
 plan (students natural)

If there's a WHERE or a HAVING clause, you can specify the index to be used for finding matches:

select * from students
 where class = '3C'
 plan (students index (ix_stud_class))

The INDEX directive is also used for join conditions (to be discussed a little later). It can contain a
list of indexes, separated by commas.

ORDER specifies the index for sorting the set if an ORDER BY or GROUP BY clause is present:

select * from students
 plan (students order pk_students)
 order by id

ORDER and INDEX can be combined:

select * from students
 where class >= '3'
 plan (students order pk_students index (ix_stud_class))
 order by id

It is perfectly OK if ORDER and INDEX specify the same index:

select * from students
 where class >= '3'
 plan (students order ix_stud_class index (ix_stud_class))
 order by class

For sorting sets when there's no usable index available (or if you want to suppress its use), leave out
ORDER and prepend the plan expression with SORT:

select * from students

DML statements

47

 plan sort (students natural)
 order by name

Or when an index is used for the search:

select * from students
 where class >= '3'
 plan sort (students index (ix_stud_class))
 order by name

Notice that SORT, unlike ORDER, is outside the parentheses. This reflects the fact that the data rows
are retrieved unordered and sorted afterwards by the engine.

When selecting from a view, specify the view and the table involved. For instance, if you have a view
FRESHMEN that selects just the first-year students:

select * from freshmen
 plan (freshmen students natural)

Or, for instance:

select * from freshmen
 where id > 10
 plan sort (freshmen students index (pk_students))
 order by name desc

Please notice: if you have aliased a table or view, you must use the alias name, not the original name,
in the PLAN clause.

Composite plans

When a join is made, you can specify the index which is to be used for matching. You must also use
the JOIN directive on the two streams in the plan:

select s.id, s.name, s.class, c.mentor
 from students s
 join classes c on c.name = s.class
 plan join (s natural, c index (pk_classes))

The same join, sorted on an indexed column:

select s.id, s.name, s.class, c.mentor
 from students s
 join classes c on c.name = s.class
 plan join (s order pk_students, c index (pk_classes))
 order by s.id

And on a non-indexed column:

select s.id, s.name, s.class, c.mentor
 from students s
 join classes c on c.name = s.class
 plan sort (join (s natural, c index (pk_classes)))
 order by s.name

With a search added:

select s.id, s.name, s.class, c.mentor
 from students s
 join classes c on c.name = s.class
 where s.class <= '2'

DML statements

48

 plan sort (join (s index (fk_student_class), c index (pk_classes)))
 order by s.name

As a left outer join:

select s.id, s.name, s.class, c.mentor
 from classes c
 left join students s on c.name = s.class
 where s.class <= '2'
 plan sort (join (c natural, s index (fk_student_class)))
 order by s.name

If there is no index available to match the join criteria (or if you don't want to use it), the plan must
first sort both streams on their join column(s) and then merge them. This is achieved with the SORT
directive (which we've already met) and MERGE instead of JOIN:

select * from students s
 join classes c on c.cookie = s.cookie
 plan merge (sort (c natural), sort (s natural))

Adding an ORDER BY clause means the result of the merge must also be sorted:

select * from students s
 join classes c on c.cookie = s.cookie
 plan sort (merge (sort (c natural), sort (s natural)))
 order by c.name, s.id

Finally, we add a search condition on two indexable colums of table STUDENTS:

select * from students s
 join classes c on c.cookie = s.cookie
 where s.id < 10 and s.class <= '2'
 plan sort (merge (sort (c natural),
 sort (s index (pk_students, fk_student_class))))
 order by c.name, s.id

As follows from the formal syntax definition, JOINs and MERGEs in the plan may combine more
than two streams. Also, every plan expression may be used as a plan item in an encompassing plan.
This means that plans of certain complicated queries may have various nesting levels.

Finally, instead of MERGE you may also write SORT MERGE. As this makes absolutely no difference
and may create confusion with “real” SORT directives (the ones that do make a difference), it's
probably best to stick to plain MERGE.

UNION
A UNION concatenates two or more datasets, thus increasing the number of rows but not the number
of columns. Datasets taking part in a UNION must have the same number of columns, and columns
at corresponding positions must be of the same type. Other than that, they may be totally unrelated.

By default, a union suppresses duplicate rows. UNION ALL shows all rows, including any duplicates.
The optional DISTINCT keyword makes the default behaviour explicit.

Syntax.

<union> ::= <individual-select>
 UNION [DISTINCT | ALL]
 <individual-select>
 [UNION [DISTINCT | ALL]
 <individual-select>

DML statements

49

 ...]
 [<union-wide-clauses>]

<individual-select> ::= SELECT
 [TRANSACTION name]
 [FIRST <m>] [SKIP <n>]
 [DISTINCT | ALL] <columns>
 [INTO <host-varlist>]
 FROM source [[AS] alias]
 [<joins>]
 [WHERE <condition>]
 [GROUP BY <grouping-list>
 [HAVING <aggregate-condition>]]
 [PLAN <plan-expr>]

<union-wide-clauses> ::= [ORDER BY <ordering-list>]
 [ROWS m [TO n]]
 [FOR UPDATE [OF <columns>]]
 [WITH LOCK]
 [INTO <PSQL-varlist>]

Unions take their column names from the first select query. If you want to alias union columns, do so
in the column list of the topmost SELECT. Aliases in other participating selects are allowed and may
even be useful, but will not propagate to the union level.

If a union has an ORDER BY clause, the only allowed sort items are integer literals indicating 1-based
column positions, optionally followed by an ASC/DESC and/or a NULLS FIRST/LAST directive.
This also implies that you cannot order a union by anything that isn't a column in the union. (You can,
however, wrap it in a derived table, which gives you back all the usual sort options.)

Unions are allowed in subqueries of any kind and can themselves contain subqueries. They can also
contain joins, and can take part in a join when wrapped in a derived table.

Examples

This query presents information from different music collections in one dataset using unions:

select id, title, artist, length, 'CD' as medium
 from cds
union
select id, title, artist, length, 'LP'
 from records
union
select id, title, artist, length, 'MC'
 from cassettes
order by 3, 2 -- artist, title

If id, title, artist and length are the only fields in the tables involved, the query can also
be written as:

select c.*, 'CD' as medium
 from cds c
union
select r.*, 'LP'
 from records r
union
select c.*, 'MC'
 from cassettes c
order by 3, 2 -- artist, title

DML statements

50

Qualifying the “stars” is necessary here because they aren't the only item in the column list. Notice
how the “c” aliases in the first and third select don't bite each other; they don't have union scope, but
only apply to their individual select query.

The next query retrieves names and phone numbers from translators and proofreaders. Translators
who also work as proofreaders will show up only once in the result set, provided their phone number is
the same in both tables. The same result can be obtained without DISTINCT. With ALL, these people
would appear twice.

select name, phone from translators
 union distinct
select name, telephone from proofreaders

A UNION within a subquery:

select name, phone, hourly_rate from clowns
where hourly_rate < all
 (select hourly_rate from jugglers
 union
 select hourly_rate from acrobats)
order by hourly_rate

MATERIAL COPIED FROM THE LRU
The sections contained herein have been copied from the Firebird 2.5 LRU (Language Reference
Update). Some of them can be deleted, others extended to become Language Reference sections, yet
others contain material that should be merged with the LR sections above.

FROM LRU: Aggregate functions: Extended functionality

Changed in. 1.5

Description. Several types of mixing and nesting aggregate functions are supported since Firebird
1.5. They will be discussed in the following subsections. To get the complete picture, also look at the
SELECT :: GROUP BY sections.

Mixing aggregate functions from different contexts

Firebird 1.5 and up allow the use of aggregate functions from different contexts inside a single
expression.

Example.

select
 r.rdb$relation_name as "Table name",
 (select max(i.rdb$statistics) || ' (' || count(*) || ')'
 from rdb$relation_fields rf
 where rf.rdb$relation_name = r.rdb$relation_name
) as "Max. IndexSel (# fields)"
from
 rdb$relations r
 join rdb$indices i on (i.rdb$relation_name = r.rdb$relation_name)
group by r.rdb$relation_name
having max(i.rdb$statistics) > 0
order by 2

This admittedly rather contrived query shows, in the second column, the maximum index selectivity
of any index defined on a table, followed by the table's field count between parentheses. Of course you
would normally display the field count in a separate column, or in the column with the table name,

DML statements

51

but the purpose here is to demonstrate that you can combine aggregates from different contexts in a
single expression.

Warning

Firebird 1.0 also executes this type of query, but gives the wrong results!

Aggregate functions and GROUP BY items inside subqueries

Since Firebird 1.5 it is possible to use aggregate functions and/or expressions contained in the GROUP
BY clause inside a subquery.

Examples.

This query returns each table's ID and field count. The subquery refers to
flds.rdb$relation_name, which is also a GROUP BY item:

select
 flds.rdb$relation_name as "Relation name",
 (select rels.rdb$relation_id
 from rdb$relations rels
 where rels.rdb$relation_name = flds.rdb$relation_name
) as "ID",
 count(*) as "Fields"
from rdb$relation_fields flds
group by flds.rdb$relation_name

The next query shows the last field from each table and its 1-based position. It uses
the aggregate function MAX in a subquery.

select
 flds.rdb$relation_name as "Table",
 (select flds2.rdb$field_name
 from rdb$relation_fields flds2
 where
 flds2.rdb$relation_name = flds.rdb$relation_name
 and flds2.rdb$field_position = max(flds.rdb$field_position)
) as "Last field",
 max(flds.rdb$field_position) + 1 as "Last fieldpos"
from rdb$relation_fields flds
group by 1

The subquery also contains the GROUP BY item flds.rdb$relation_name,
but that's not immediately obvious because in this case the GROUP BY clause uses
the column number.

Subqueries inside aggregate functions

Using a singleton subselect inside (or as) an aggregate function argument is supported in Firebird 1.5
and up.

Example.

select
 r.rdb$relation_name as "Table",
 sum((select count(*)
 from rdb$relation_fields rf
 where rf.rdb$relation_name = r.rdb$relation_name)
) as "Ind. x Fields"

DML statements

52

from
 rdb$relations r
 join rdb$indices i
 on (i.rdb$relation_name = r.rdb$relation_name)
group by
 r.rdb$relation_name

Nesting aggregate function calls

Firebird 1.5 allows the indirect nesting of aggregate functions, provided that the inner function is from
a lower SQL context. Direct nesting of aggregate function calls, as in “COUNT(MAX(price))”, is
still forbidden and punishable by exception.

Example. See under Subqueries inside aggregate functions, where COUNT() is used inside a
SUM().

Aggregate statements: Stricter HAVING and ORDER BY

Firebird 1.5 and above are stricter than previous versions about what can be included in the HAVING
and ORDER BY clauses. If, in the context of an aggregate statement, an operand in a HAVING or
ORDER BY item contains a column name, it is only accepted if one of the following is true:

• The column name appears in an aggregate function call (e.g. “HAVING MAX(SALARY) >
10000”).

• The operand equals or is based upon a non-aggregate column that appears in the GROUP BY list
(by name or position).

“Is based upon” means that the operand need not be exactly the same as the column name. Suppose
there's a non-aggregate column “STR” in the select list. Then it's OK to use expressions like
“UPPER(STR)”, “STR || '!'” or “SUBSTRING(STR FROM 4 FOR 2)” in the HAVING clause – even
if these expressions don't appear as such in the SELECT or GROUP BY list.

FROM LRU: [AS] before relation alias

Added in. IB

Description. The keyword AS can optionally be placed before a relation alias, just as it can be
placed before a column alias. This feature dates back to InterBase times, but wasn't documented in
the IB Language Reference.

Syntax.

SELECT ... FROM <relation> [AS] alias

<relation> ::= A table, view, or selectable SP

Examples.

select order_no, total, fullname
 from orders as o join customers as c on o.cust_id = c.cust_id

select order_no, total, fullname
 from orders o join customers c on o.cust_id = c.cust_id

The two queries are fully equivalent.

FROM LRU: COLLATE subclause for text BLOB columns

Added in. 2.0

DML statements

53

Description. COLLATE subclauses are now also supported for text BLOBs.

Example.

select NameBlob from MyTable
 where NameBlob collate pt_br = 'João'

FROM LRU: Common Table Expressions (“WITH ... AS ...
SELECT”)

Available in. DSQL, PSQL

A common table expression or CTE can be described as a virtual table or view, defined in a preamble
to a main query, and going out of scope after the main query's execution. The main query can reference
any CTEs defined in the preamble as if they were regular tables or views. CTEs can be recursive, i.e.
self-referencing, but they cannot be nested.

Syntax.

<cte-construct> ::= <cte-defs>
 <main-query>

<cte-defs> ::= WITH [RECURSIVE] <cte> [, <cte> ...]

<cte> ::= name [(<column-list>)] AS (<cte-stmt>)

<column-list> ::= column-alias [, column-alias ...]

<cte-stmt> ::= any SELECT statement or UNION

<main-query> ::= the main SELECT statement, which can refer to the
 CTEs defined in the preamble

Example.

with dept_year_budget as (
 select fiscal_year,
 dept_no,
 sum(projected_budget) as budget
 from proj_dept_budget
 group by fiscal_year, dept_no
)
select d.dept_no,
 d.department,
 dyb_2008.budget as budget_08,
 dyb_2009.budget as budget_09
from department d
 left join dept_year_budget dyb_2008
 on d.dept_no = dyb_2008.dept_no
 and dyb_2008.fiscal_year = 2008
 left join dept_year_budget dyb_2009
 on d.dept_no = dyb_2009.dept_no
 and dyb_2009.fiscal_year = 2009
where exists (
 select * from proj_dept_budget b
 where d.dept_no = b.dept_no
)

Notes.

DML statements

54

• A CTE definition can contain any legal SELECT statement, as long as it doesn't have a “WITH...”
preamble of its own (no nesting).

• CTEs defined for the same main query can reference each other, but care should be taken to avoid
loops.

• CTEs can be referenced from anywhere in the main query.

• Each CTE can be referenced multiple times in the main query, possibly with different aliases.

• When enclosed in parentheses, CTE constructs can be used as subqueries in SELECT statements,
but also in UPDATEs, MERGEs etc.

• In PSQL, CTEs are also supported in FOR loop headers:

for with my_rivers as (select * from rivers where owner = 'me')
 select name, length from my_rivers into :rname, :rlen
do
begin
 ..
end

Recursive CTEs

A recursive (self-referencing) CTE is a UNION which must have at least one non-recursive member,
called the anchor. The non-recursive member(s) must be placed before the recursive member(s).
Recursive members are linked to each other and to their non-recursive neighbour by UNION ALL
operators. The unions between non-recursive members may be of any type.

Recursive CTEs require the RECURSIVE keyword to be present right after WITH. Each recursive
union member may reference itself only once, and it must do so in a FROM clause.

A great benefit of recursive CTEs is that they use far less memory and CPU cycles than an equivalent
recursive stored procedure.

The execution pattern of a recursive CTE is as follows:

• The engine begins execution from a non-recursive member.

• For each row evaluated, it starts executing each recursive member one by one, using the current
values from the outer row as parameters.

• If the currently executing instance of a recursive member produces no rows, execution loops back
one level and gets the next row from the outer result set.

Example with a recursive CTE.

with recursive
 dept_year_budget as (
 select fiscal_year,
 dept_no,
 sum(projected_budget) as budget
 from proj_dept_budget
 group by fiscal_year, dept_no
),
 dept_tree as (
 select dept_no,
 head_dept,
 department,
 cast('' as varchar(255)) as indent

DML statements

55

 from department
 where head_dept is null
 union all
 select d.dept_no,
 d.head_dept,
 d.department,
 h.indent || ' '
 from department d
 join dept_tree h on d.head_dept = h.dept_no
)
select d.dept_no,
 d.indent || d.department as department,
 dyb_2008.budget as budget_08,
 dyb_2009.budget as budget_09
from dept_tree d
 left join dept_year_budget dyb_2008
 on d.dept_no = dyb_2008.dept_no
 and dyb_2008.fiscal_year = 2008
 left join dept_year_budget dyb_2009
 on d.dept_no = dyb_2009.dept_no
 and dyb_2009.fiscal_year = 2009

Notes on recursive CTEs.

• Aggregates (DISTINCT, GROUP BY, HAVING) and aggregate functions (SUM, COUNT, MAX
etc) are not allowed in recursive union members.

• A recursive reference cannot participate in an outer join.

• The maximum recursion depth is 1024.

FROM LRU: Derived tables (“SELECT FROM SELECT”)

A derived table is the result set of a SELECT query, used in an outer SELECT as if it were an ordinary
table. Put another way, it is a subquery in the FROM clause.

Syntax.

(select-query)
 [[AS] derived-table-alias]
 [(<derived-column-aliases>)]

<derived-column-aliases> ::= column-alias [, column-alias ...]

Examples.

The derived table in the query below (shown in boldface) contains all the relation
names in the database followed by their field count. The outer SELECT produces,
for each existing field count, the number of relations having that field count.

select fieldcount,
 count(relation) as num_tables
from (select r.rdb$relation_name as relation,
 count(*) as fieldcount
 from rdb$relations r
 join rdb$relation_fields rf
 on rf.rdb$relation_name = r.rdb$relation_name
 group by relation)
group by fieldcount

DML statements

56

A trivial example demonstrating the use of a derived table alias and column aliases
list (both are optional):

select dbinfo.descr,
 dbinfo.def_charset
from (select * from rdb$database) dbinfo
 (descr, rel_id, sec_class, def_charset)

Notes.

• Derived tables can be nested.

• Derived tables can be unions and can be used in unions. They can contain aggregate functions,
subselects and joins, and can themselves be used in aggregate functions, subselects and joins. They
can also be or contain queries on selectable stored procedures. They can have WHERE, ORDER
BY and GROUP BY clauses, FIRST, SKIP or ROWS directives, etc. etc.

• Every column in a derived table must have a name. If it doesn't have one by nature (e.g. because
it's a constant) it must either be given an alias in the usual way, or a column aliases list must be
added to the derived table specification.

• The column aliases list is optional, but if it is used it must be complete. That is: it must contain an
alias for every column in the derived table.

• The optimizer can handle a derived table very efficiently. However, if the derived table is involved
in an inner join and contains a subquery, then no join order can be made.

FROM LRU: FIRST and SKIP

Available in. DSQL, PSQL

Added in. 1.0

Changed in. 1.5

Better alternative. ROWS

Description. FIRST limits the output of a query to the first so-many rows. SKIP will suppress the
given number of rows before starting to return output.

Tip

In Firebird 2.0 and up, use the SQL-compliant ROWS syntax instead.

Syntax.

SELECT [FIRST (<int-expr>)] [SKIP (<int-expr>)] <columns> FROM ...

<int-expr> ::= Any expression evaluating to an integer.
<columns> ::= The usual output column specifications.

Note

If <int-expr> is an integer literal or a query parameter, the “()”
may be omitted. Subselects on the other hand require an extra pair of
parentheses.

FIRST and SKIP are both optional. When used together as in “FIRST m SKIP n”, the n topmost rows
of the output set are discarded and the first m rows of the remainder are returned.

DML statements

57

SKIP 0 is allowed, but of course rather pointless. FIRST 0 is allowed in version 1.5 and up, where it
returns an empty set. In 1.0.x, FIRST 0 causes an error. Negative SKIP and/or FIRST values always
result in an error.

If a SKIP lands past the end of the dataset, an empty set is returned. If the number of rows in the dataset
(or the remainder after a SKIP) is less than the value given after FIRST, that smaller number of rows
is returned. These are valid results, not error situations.

Examples.

The following query will return the first 10 names from the People table:

select first 10 id, name from People
 order by name asc

The following query will return everything but the first 10 names:

select skip 10 id, name from People
 order by name asc

And this one returns the last 10 rows. Notice the double parentheses:

select skip ((select count(*) - 10 from People))
 id, name from People
 order by name asc

This query returns rows 81–100 of the People table:

select first 20 skip 80 id, name from People
 order by name asc

Two Gotchas with FIRST in subselects

• This:

delete from MyTable where ID in (select first 10 ID from MyTable)

will delete all of the rows in the table. Ouch! The sub-select is evaluating each 10
candidate rows for deletion, deleting them, slipping forward 10 more... ad infinitum,
until there are no rows left. Beware! Or better: use the ROWS syntax, available since
Firebird 2.0.

• Queries like:

...where F1 in (select first 5 F2 from Table2 order by 1 desc)

won't work as expected, because the optimization performed by the engine transforms
the IN predicate to the correlated EXISTS predicate shown below. It's obvious that in
this case FIRST N doesn't make any sense:

...where exists
 (select first 5 F2 from Table2
 where Table2.F2 = Table1.F1
 order by 1 desc)

FROM LRU: GROUP BY

Description. GROUP BY merges rows that have the same combination of values and/or NULLs
in the item list into a single row. Any aggregate functions in the select list are applied to each group
individually instead of to the dataset as a whole.

DML statements

58

Syntax.

SELECT ... FROM ...
 GROUP BY <item> [, <item> ...]
 ...

<item> ::= column-name [COLLATE collation-name]
 | column-alias
 | column-position
 | expression

• Only non-negative integer literals will be interpreted as column positions. If
they are outside the range from 1 to the number of columns, an error is raised.
Integer values resulting from expressions or parameter substitutions are simply
invariables and will be used as such in the grouping. They will have no effect
though, as their value is the same for each row.

• A GROUP BY item cannot be a reference to an aggregate function (including one
that is buried inside an expression) from the same context.

• The select list may not contain expressions that can have different values within
a group. To avoid this, the rule of thumb is to include each non-aggregate item
from the select list in the GROUP BY list (whether by copying, alias or position).

Note. If you group by a column position, the expression at that position is copied internally from
the select list. If it concerns a subquery, that subquery will be executed at least twice.

Grouping by alias, position and expressions

Changed in. 1.0, 1.5, 2.0

Description. In addition to column names, Firebird 2 allows column aliases, column positions and
arbitrary valid expressions as GROUP BY items.

Examples.

These three queries all achieve the same result:

select strlen(lastname) as len_name, count(*)
 from people
 group by len_name

select strlen(lastname) as len_name, count(*)
 from people
 group by 1

select strlen(lastname) as len_name, count(*)
 from people
 group by strlen(lastname)

History. Grouping by UDF results was added in Firebird 1. Grouping by column positions, CASE
outcomes and a limited number of internal functions in Firebird 1.5. Firebird 2 added column aliases
and expressions in general as valid GROUP BY items (“expressions in general” absorbing the UDF,
CASE and internal functions lot).

FROM LRU: HAVING: Stricter rules

Changed in. 1.5

Description. See Aggregate statements: Stricter HAVING and ORDER BY.

DML statements

59

FROM LRU: JOIN

Ambiguous field names rejected

Changed in. 1.0

Description. InterBase 6 accepts and executes statements like the one below, which refers to an
unqualified column name even though that name exists in both tables participating in the JOIN:

select buses.name, garages.name
 from buses join garages on buses.garage_id = garage.id
 where name = 'Phideaux III'

The results of such a query are unpredictable. Firebird Dialect 3 returns an error if there are ambiguous
field names in JOIN statements. Dialect 1 gives a warning but will execute the query anyway.

CROSS JOIN

Added in. 2.0

Description. Firebird 2.0 and up support CROSS JOIN, which performs a full set multiplication
on the tables involved. Previously you had to achieve this by joining on a tautology (a condition that
is always true) or by using the comma syntax, now deprecated.

Syntax.

SELECT ...
 FROM <relation> CROSS JOIN <relation>
 ...

<relation> ::= {table | view | cte | (select_stmt)} [[AS] alias]

Note: If you use CROSS JOIN, you can't use ON.

Example.

select * from Men cross join Women
order by Men.age, Women.age

-- old syntax:
-- select * from Men join Women on 1 = 1
-- order by Men.age, Women.age

-- comma syntax:
-- select * from Men, Women
-- order by Men.age, Women.age

Named columns JOIN

Added in. 2.1

Description. A named columns join is an equi-join on the columns named in the USING clause.
These columns must exist in both relations.

Syntax.

SELECT ...
 FROM <relation> [<join_type>] JOIN <relation>
 USING (colname [, colname ...])

DML statements

60

 ...

<relation> ::= {table | view | cte | (select_stmt)} [[AS] alias]
<join_type> ::= INNER | {LEFT | RIGHT | FULL} [OUTER]

Example.

select *
 from books join shelves
 using (shelf, bookcase)

The equivalent in traditional syntax:

select *
 from books b join shelves s
 on b.shelf = s.shelf and b.bookcase = s.bookcase

Notes.

• The columns in the USING clause can be selected without qualifier. Be aware, however, that
doing so in outer joins doesn't always give the same result as selecting left.colname or
right.colname. One of the latter may be NULL while the other isn't; plain colname always
returns the non-NULL alternative in such cases.

• SELECT * from a named columns join returns each USING column only once. In outer joins, such
a column always contains the non-NULL alternative except for rows where the field is NULL in
both tables.

Natural JOIN

Added in. 2.1

Description. A natural join is an automatic equi-join on all the columns that exist in both relations.
If there are no common column names, a CROSS JOIN is produced.

Syntax.

SELECT ...
 FROM <relation> NATURAL [<join_type>] JOIN <relation>
 ...

<relation> ::= {table | view | cte | (select_stmt)} [[AS] alias]
<join_type> ::= INNER | {LEFT | RIGHT | FULL} [OUTER]

Example.

select * from Pupils natural left join Tutors

Assuming that the Pupils and Tutors tables have two field names in common:
TUTOR and CLASS, the equivalent traditional syntax is:

select * from Pupils p left join Tutors t
 on p.tutor = t.tutor and p.class = t.class

Notes.

• Common columns can be selected from a natural join without qualifier. Beware, however, that
doing so in outer joins doesn't always gives the same result as selecting left.colname or
right.colname. One of the latter may be NULL while the other isn't; plain colname always
returns the non-NULL alternative in such cases.

DML statements

61

• SELECT * from a natural join returns each common column only once. In outer joins, such a column
always contains the non-NULL alternative except for rows where the field is NULL in both tables.

FROM LRU: ORDER BY

Syntax.

SELECT ... FROM ...
 ...
 ORDER BY <ordering-item> [, <ordering-item> ...]

<ordering-item> ::= {col-name | col-alias | col-position | expression}
 [COLLATE collation-name]
 [ASC[ENDING] | DESC[ENDING]]
 [NULLS {FIRST|LAST}]

Order by column alias

Added in. 2.0

Description. Firebird 2.0 and above support ordering by column alias.

Example.

select rdb$character_set_id as charset_id,
 rdb$collation_id as coll_id,
 rdb$collation_name as name
from rdb$collations
order by charset_id, coll_id

Ordering by column position causes * expansion

Changed in. 2.0

Description. If you order by column position in a “SELECT *” query, the engine will now expand
the * to determine the sort column(s).

Examples.

The following wasn't possible in pre-2.0 versions:

select * from rdb$collations
order by 3, 2

The following would sort the output set on Films.Director in previous
versions. In Firebird 2 and up, it will sort on the second column of Books:

select Books.*, Films.Director from Books, Films
order by 2

Ordering by expressions

Added in. 1.5

Description. Firebird 1.5 introduced the possibility to use expressions as ordering items. Please
note that expressions consisting of a single non-negative whole number will be interpreted as column
positions and cause an exception if they're not in the range from 1 to the number of columns.

Example.

select x, y, note from Pairs

DML statements

62

order by x+y desc

Note

The number of function or procedure invocations resulting from a sort based on a UDF
or stored procedure is unpredictable, regardless whether the ordering is specified by the
expression itself or by the column position number.

Notes.

• The number of function or procedure invocations resulting from a sort based on a UDF or stored
procedure is unpredictable, regardless whether the ordering is specified by the expression itself or
by the column position number.

• Only non-negative whole number literals are interpreted as column positions. A whole number
resulting from an expression evaluation or parameter substitution is seen as an integer invariable
and will lead to a dummy sort, since its value is the same for each row.

NULLs placement

Changed in. 1.5, 2.0

Description. Firebird 1.5 has introduced the per-column NULLS FIRST and NULLS LAST
directives to specify where NULLs appear in the sorted column. Firebird 2.0 has changed the default
placement of NULLs.

Unless overridden by NULLS FIRST or NULLS LAST, NULLs in ordered columns are placed as
follows:

• In Firebird 1.0 and 1.5: at the end of the sort, regardless whether the order is ascending or descending.

• In Firebird 2.0 and up: at the start of ascending orderings and at the end of descending orderings.

See also the table below for an overview of the different versions.

Table 6.1. NULLs placement in ordered columns

NULLs placementOrdering

Firebird 1 Firebird 1.5 Firebird 2

order by Field [asc] bottom bottom top

order by Field desc bottom bottom bottom

order by Field [asc | desc] nulls first — top top

order by Field [asc | desc] nulls last — bottom bottom

Notes

• Pre-existing databases may need a backup-restore cycle before they show the correct
NULL ordering behaviour under Firebird 2.0 and up.

• No index will be used on columns for which a non-default NULLS placement is
chosen. In Firebird 1.5, that is the case with NULLS FIRST. In 2.0 and higher, with
NULLS LAST on ascending and NULLS FIRST on descending sorts.

Examples.

select * from msg
 order by process_time desc nulls first

select * from document

DML statements

63

 order by strlen(description) desc
 rows 10

select doc_number, doc_date from payorder
union all
select doc_number, doc_date from budgorder
 order by 2 desc nulls last, 1 asc nulls first

Stricter ordering rules with aggregate statements

Changed in. 1.5

Description. See Aggregate statements: Stricter HAVING and ORDER BY.

FROM LRU: PLAN

Available in. DSQL, ESQL, PSQL

Description. Specifies a user plan for the data retrieval, overriding the plan that the optimizer
would have generated automatically.

Syntax.

PLAN <plan-expr>

<plan-expr> ::= (<plan-item> [, <plan-item> ...])
 | <sorted-item>
 | <joined-item>
 | <merged-item>

<sorted-item> ::= SORT (<plan-item>)

<joined-item> ::= JOIN (<plan-item>, <plan-item> [, <plan-item> ...])

<merged-item> ::= [SORT] MERGE (<sorted-item>, <sorted-item> [, <sorted-item> ...])

<plan-item> ::= <basic-item> | <plan-expr>

<basic-item> ::= <relation>
 {NATURAL -- natural scan (fetch in storage order)
 | INDEX (<indexlist>) -- indexed retrieval (index to match search)
 | ORDER index [INDEX (<indexlist>)]} -- navigational scan (index for ordering)

<relation> ::= table
 | view [table] -- en een SP, CTE of derived table?

<indexlist> ::= index [, index ...]

table, view ::= name or alias

Handling of user PLANs improved

Changed in. 2.0

Description. Firebird 2 has implemented the following improvements in the handling of user-
specified PLANs:

• Plan fragments are propagated to nested levels of joins, enabling manual optimization of complex
outer joins.

DML statements

64

• User-supplied plans will be checked for correctness in outer joins.

• Short-circuit optimization for user-supplied plans has been added.

• A user-specified access path can be supplied for any SELECT-based statement or clause.

ORDER with INDEX

Changed in. 2.0

Description. A single plan item can now contain both an ORDER and an INDEX directive (in
that order).

Example.

plan (MyTable order ix_myfield index (ix_this, ix_that))

PLAN must include all tables

Changed in. 2.0

Description. In Firebird 2 and up, a PLAN clause must handle all the tables in the query. Previous
versions sometimes accepted incomplete plans, but this is no longer the case.

FROM LRU: Relation alias makes real name unavailable

Changed in. 2.0

Description. If you give a table or view an alias in a Firebird 2.0 or above statement, you must use
the alias, not the table name, if you want to qualify fields from that relation.

Examples.

Correct usage:

select pears from Fruit

select Fruit.pears from Fruit

select pears from Fruit F

select F.pears from Fruit F

No longer possible:

select Fruit.pears from Fruit F

FROM LRU: ROWS

Available in. DSQL, PSQL

Added in. 2.0

Description. Limits the amount of rows returned by the SELECT statement to a specified number
or range.

Syntax.

With a single SELECT:

SELECT <columns> FROM ...
 [WHERE ...]

DML statements

65

 [ORDER BY ...]
 ROWS <m> [TO <n>]

<columns> ::= The usual output column specifications.
<m>, <n> ::= Any expression evaluating to an integer.

With a UNION:

SELECT [FIRST p] [SKIP q] <columns> FROM ... [WHERE ...]
UNION [ALL | DISTINCT]
SELECT [FIRST r] [SKIP s] <columns> FROM ... [WHERE ...]
[ORDER BY ...]
ROWS <m> [TO <n>]

With a single argument m, the first m rows of the dataset are returned.

Points to note:

• If m > the total number of rows in the dataset, the entire set is returned.
• If m = 0, an empty set is returned.
• If m < 0, an error is raised.

With two arguments m and n, rows m to n of the dataset are returned, inclusively. Row numbers are
1-based.

Points to note when using two arguments:

• If m > the total number of rows in the dataset, an empty set is returned.
• If m lies within the set but n doesn't, the rows from m to the end of the set are returned.
• If m < 1 or n < 1, an error is raised.
• If n = m-1, an empty set is returned.
• If n < m-1, an error is raised.

The SQL-compliant ROWS syntax obviates the need for FIRST and SKIP, except in one case: a SKIP
without FIRST, which returns the entire remainder of the set after skipping a given number of rows.
(You can often “fake it” though, by supplying a second argument that you know to be bigger than
the number of rows in the set.)

You cannot use ROWS together with FIRST and/or SKIP in a single SELECT statement, but is it
valid to use one form in the top-level statement and the other in subselects, or to use the two syntaxes
in different subselects.

When used with a UNION, the ROWS subclause applies to the UNION as a whole and must be placed
after the last SELECT. If you want to limit the output of one or more individual SELECTs within
the UNION, you have two options: either use FIRST/SKIP on those SELECT statements (probably
of limited use, as you can't use ORDER BY on individual selects within a union), or convert them to
derived tables with ROWS clauses.

ROWS can also be used with the UPDATE and DELETE statements.

FROM LRU: UNION

Available in. DSQL, ESQL, PSQL

UNIONs in subqueries

Changed in. 2.0

Description. UNIONs are now allowed in subqueries. This applies not only to column-level
subqueries in a SELECT list, but also to subqueries in ANY|SOME, ALL and IN predicates, as well
as the optional SELECT expression that feeds an INSERT.

DML statements

66

Example.

select name, phone, hourly_rate from clowns
where hourly_rate < all
 (select hourly_rate from jugglers
 union
 select hourly_rate from acrobats)
order by hourly_rate

UNION DISTINCT

Added in. 2.0

Description. You can now use the optional DISTINCT keyword when defining a UNION. This will
show duplicate rows only once instead of every time they occur in one of the tables. Since DISTINCT,
being the opposite of ALL, is the default mode anyway, this doesn't add any new functionality.

Syntax.

SELECT (...) FROM (...)
UNION [DISTINCT | ALL]
SELECT (...) FROM (...)

Example.

select name, phone from translators
 union distinct
select name, phone from proofreaders

Translators who also work as proofreaders (a not uncommon combination) will
show up only once in the result set, provided their phone number is the same in both
tables. The same result would have been obtained without DISTINCT. With ALL,
they would appear twice.

FROM LRU: WITH LOCK

Available in. DSQL, PSQL

Added in. 1.5

Description: WITH LOCK provides a limited explicit pessimistic locking capability for cautious
use in conditions where the affected row set is:

a. extremely small (ideally, a singleton), and
b. precisely controlled by the application code.

This is for experts only!

The need for a pessimistic lock in Firebird is very rare indeed and should be well
understood before use of this extension is considered.

It is essential to understand the effects of transaction isolation and other transaction
attributes before attempting to implement explicit locking in your application.

Syntax.

SELECT ... FROM single_table
 [WHERE ...]
 [FOR UPDATE [OF ...]]

DML statements

67

 WITH LOCK

If the WITH LOCK clause succeeds, it will secure a lock on the selected rows and prevent any other
transaction from obtaining write access to any of those rows, or their dependants, until your transaction
ends.

If the FOR UPDATE clause is included, the lock will be applied to each row, one by one, as it is fetched
into the server-side row cache. It becomes possible, then, that a lock which appeared to succeed when
requested will nevertheless fail subsequently, when an attempt is made to fetch a row which becomes
locked by another transaction.

WITH LOCK can only be used with a top-level, single-table SELECT statement. It is not available:

• in a subquery specification;
• for joined sets;
• with the DISTINCT operator, a GROUP BY clause or any other aggregating operation;
• with a view;
• with the output of a selectable stored procedure;
• with an external table.

A lengthier, more in-depth discussion of “SELECT ... WITH LOCK” is included in the Notes. It is a
must-read for everybody who considers using this feature.

UPDATE
Available in. DSQL, ESQL, PSQL

Description. Changes values in a table or in one or more tables underlying a view. The columns
affected are specified in the SET clause; the rows affected may be limited by the WHERE and ROWS
clauses. If neither WHERE nor ROWS is present, all the records in the table will be updated.

Syntax.

UPDATE [TRANSACTION name] target [[AS] alias]
 SET col = newval [, col = newval ...]
 [WHERE {search-conditions | CURRENT OF cursorname}]
 [PLAN plan_items]
 [ORDER BY sort_items]
 [ROWS <m> [TO <n>]]
 [RETURNING <values> [INTO <variables>]]

target ::= A table or updatable view
<m>, <n> ::= Any expression evaluating to an integer.
<values> ::= value_expression [, value_expression ...]
<variables> ::= :varname [, :varname ...]

Restrictions

• The TRANSACTION directive is only available in ESQL.
• In a pure DSQL session, WHERE CURRENT OF isn't of much use,

since there exists no DSQL statement to create a cursor.
• No column may be SET more than once in the same UPDATE

statement.
• The “INTO <variables>” subclause is only available in PSQL.
• When returning values into the context variable NEW, this name

must not be preceded by a colon (“:”).
• The PLAN, ORDER BY, ROWS and RETURNING clauses are not

available in ESQL.

DML statements

68

Using an alias
If you give a table or view an alias, you must use the alias, not the table name, if you want to qualify
fields from that relation.

Examples.

Correct usage:

update Fruit set soort = 'pisang' where ...

update Fruit set Fruit.soort = 'pisang' where ...

update Fruit F set soort = 'pisang' where ...

update Fruit F set F.soort = 'pisang' where ...

Not possible:

update Fruit F set Fruit.soort = 'pisang' where ...

The SET clause
The SET clause specifies the values to be written to the affected row(s). It is a comma-separated list
of assignments, each with a column name on the left hand side and a value expression on the right
hand side.

String literals may optionally be preceded by a character set name, using introducer syntax, in order
to let the engine know how to interpret the input.

Examples.

update addresses
 set city = 'Saint Petersburg', citycode = 'PET'
 where city = 'Leningrad'

update employees
 set salary = 2.5 * salary
 where title = 'CEO'

update People
 set name = _ISO8859_1 'Hans-Jörg Schäfer' -- notice the '_' prefix
 where id = 53662

It is perfectly legal to include target columns in the value expressions on the right hand side, providing
values for themselves and/or other columns. If this is done, the value used on the right hand side will
always be the old column value, even if an assignment has already been made to the same column
earlier in the list. The following example illustrates this.

Given table TSET:

A B

1 0
2 0

the following statement:

update tset set a=5, b=a

will change its state to

DML statements

69

A B

5 1
5 2

Notice how the old values of a (1 and 2) are used for the update of b, even though a itself has already
been assigned a new value (5).

Note

This has not always been the case. In pre-2.5 versions of Firebird, new column values
became immediately available for subsequent assignments in the list. This is non-
standard behaviour; hence it has been changed.

However, if the OldSetClauseSemantics parameter in firebird.conf has
been set to 1, Firebird will continue to show the old behaviour. This parameter will be
deprecated and removed somewhere in the future.

The WHERE clause
A WHERE clause limits the update action to the rows matching the search condition, or – in ESQL
and PSQL only – to the current row of a named cursor.

Examples.

update People set firstname = 'Boris' where lastname = 'Johnson'

update Cities set name = :arg_name where current of Cur_Cities; -- ESQL and PSQL only

An update using WHERE CURRENT OF is called a positioned update, because it updates the record at
the current position. An update using “WHERE <condition>” is called a searched update, because
the engine has to search for the record(s) meeting the condition.

ORDER BY and ROWS
If at all, ORDER BY and ROWS only make sense when used together. However, they are also valid
separately.

With a single argument m, ROWS limits the update to the first m rows of the dataset defined by the
table or view and the optional WHERE and ORDER BY clauses.

With two arguments m and n, the update is limited to rows m to n inclusively. Row numbers are 1-
based.

Example.

-- give the 20 poorest guys a break:
update employees
 set salary = salary + 50
 order by salary asc
 rows 20

Points to note when using ROWS with one argument:

• If m > the total number of rows in the dataset, the entire set is updated.
• If m = 0, no rows are updated.
• If m < 0, an error is raised.

Points to note when using ROWS with two arguments:

DML statements

70

• If m > the total number of rows in the dataset, no rows are updated.
• If m lies within the set but n doesn't, the rows from m to the end of the set are updated.
• If m < 1 or n < 1, an error is raised.
• If n = m-1, no rows are updated.
• If n < m-1, an error is raised.

RETURNING
An UPDATE statement modifying at most one row may optionally include a RETURNING clause in
order to return values from the updated row. The clause, if present, need not contain all the modified
columns and may also contain other columns or expressions. The returned values reflect any changes
that may have been made in BEFORE triggers, but not those in AFTER triggers. OLD.fieldname
and NEW.fieldname may both be used in the list of columns to return; for field names not preceded
by either of these, the new value is returned.

Example.

update Scholars
 set firstname = 'Hugh', lastname = 'Pickering'
 where firstname = 'Henry' and lastname = 'Higgins'
 returning id, old.lastname, new.lastname

In DSQL, a statement with a RETURNING clause always returns exactly one row. If no record was
actually updated, the fields in this row are all NULL. This behaviour may change in a later version
of Firebird. In PSQL, if no row was updated, nothing is returned, and the target variables keep their
existing values.

Updating BLOB columns
Updating a BLOB column always replaces the entire contents. Even the BLOB ID, the “handle” that
is stored directly in the column, is changed. BLOBs can be updated if:

1. The client application has made special provisions for this operation, using the Firebird API. In this
case, the modus operandi is application-specific and outside the scope of this manual.

2. The new value is a text string of at most 32767 bytes. Please notice: if the value is not a string
literal, beware of concatenations, as these may exceed the maximum length.

3. The source is itself a BLOB column or, more generally, an expression that returns a BLOB.

4. You use the INSERT CURSOR statement (ESQL only).

UPDATE OR INSERT
Available in. DSQL, PSQL

UPDATE OR INSERT inserts a new record or updates one or more existing records. The action taken
depends on the values provided for the columns in the MATCHING clause (or, if the latter is absent,
in the primary key). If there are records found matching those values, they are updated. If not, a new
record is inserted.

A match only counts if all the values in the MATCHING or PK columns are equal. Matching is done
with the IS NOT DISTINCT operator, so one NULL matches another.

Syntax.

UPDATE OR INSERT INTO
 {tablename | viewname} [(<columns>)]

DML statements

71

 VALUES (<values>)
 [MATCHING (<columns>)]
 [RETURNING <values> [INTO <variables>]]

<columns> ::= colname [, colname ...]
<values> ::= value [, value ...]
<variables> ::= :varname [, :varname ...]

Restrictions

• If the table has no PK, the MATCHING clause becomes mandatory.
• In the MATCHING list as well as in the update/insert column list,

each column name may occur only once.
• The “INTO <variables>” subclause is only available in PSQL.
• When values are returned into the context variable NEW, this name

must not be preceded by a colon (“:”).

Example.

update or insert into Cows (Name, Number, Location)
 values ('Suzy Creamcheese', 3278823, 'Green Pastures')
 matching (Number)
 returning rec_id into :id;

The RETURNING clause
The optional RETURNING clause, if present, need not contain all the columns mentioned in the
statement and may also contain other columns or expressions. The returned values reflect any changes
that may have been made in BEFORE triggers, but not those in AFTER triggers. OLD.fieldname
and NEW.fieldname may both be used in the list of columns to return; for field names not preceded
by either of these, the new value is returned.

In DSQL, a statement with a RETURNING clause always returns exactly one row. If a RETURNING
clause is present and more than one matching record is found, an error is raised. This behaviour may
change in a later version of Firebird.

72

Chapter 7. Built-in functions and
variables
Context variables

CURRENT_CONNECTION

Available in. DSQL, PSQL

Added in. 1.5

Changed in. 2.1

Description. CURRENT_CONNECTION contains the unique identifier of the current connection.

Type. INTEGER

Examples.

select current_connection from rdb$database

execute procedure P_Login(current_connection)

The value of CURRENT_CONNECTION is stored on the database header page and reset to 0 upon
restore. Since version 2.1, it is incremented upon every new connection. (In previous versions, it was
only incremented if the client read it during a session.) As a result, CURRENT_CONNECTION now
indicates the number of connections since the creation – or most recent restoration – of the database.

CURRENT_DATE

Available in. DSQL, PSQL, ESQL

Description. CURRENT_DATE returns the current server date.

Type. DATE

Syntax.

CURRENT_DATE

Examples.

select current_date from rdb$database
-- returns e.g. 2011-10-03

Notes.

• Within a PSQL module (procedure, trigger or executable block), the value of CURRENT_DATE will
remain constant every time it is read. If multiple modules call or trigger each other, the value will
remain constant throughout the duration of the outermost module. If you need a progressing value
in PSQL (e.g. to measure time intervals), use 'TODAY'.

CURRENT_ROLE

Available in. DSQL, PSQL

Built-in functions and variables

73

Added in. 1.0

Description. CURRENT_ROLE is a context variable containing the role of the currently connected
user. If there is no active role, CURRENT_ROLE is NONE.

Type. VARCHAR(31)

Example.

if (current_role <> 'MANAGER')
 then exception only_managers_may_delete;
else
 delete from Customers where custno = :custno;

CURRENT_ROLE always represents a valid role or NONE. If a user connects with a non-existing role,
the engine silently resets it to NONE without returning an error.

CURRENT_TIME

Available in. DSQL, PSQL, ESQL

Changed in. 2.0

Description. CURRENT_TIME returns the current server time. In versions prior to 2.0, the
fractional part used to be always “.0000”, giving an effective precision of 0 decimals. From Firebird
2.0 onward you can specify a precision when polling this variable. The default is still 0 decimals, i.e.
seconds precision.

Type. TIME

Syntax.

CURRENT_TIME [(precision)]

precision ::= 0 | 1 | 2 | 3

The optional precision argument is not supported in ESQL.

Examples.

select current_time from rdb$database
-- returns e.g. 14:20:19.6170

select current_time(2) from rdb$database
-- returns e.g. 14:20:23.1200

Notes.

• Unlike CURRENT_TIME, the default precision of CURRENT_TIMESTAMP has changed to 3
decimals. As a result, CURRENT_TIMESTAMP is no longer the exact sum of CURRENT_DATE and
CURRENT_TIME, unless you explicitly specify a precision.

• Within a PSQL module (procedure, trigger or executable block), the value of CURRENT_TIME will
remain constant every time it is read. If multiple modules call or trigger each other, the value will
remain constant throughout the duration of the outermost module. If you need a progressing value
in PSQL (e.g. to measure time intervals), use 'NOW'.

CURRENT_TIMESTAMP

Available in. DSQL, PSQL, ESQL

Built-in functions and variables

74

Changed in. 2.0

Description. CURRENT_TIMESTAMP returns the current server date and time. In versions prior to
2.0, the fractional part used to be always “.0000”, giving an effective precision of 0 decimals. From
Firebird 2.0 onward you can specify a precision when polling this variable. The default is 3 decimals,
i.e. milliseconds precision.

Type. TIMESTAMP

Syntax.

CURRENT_TIMESTAMP [(precision)]

precision ::= 0 | 1 | 2 | 3

The optional precision argument is not supported in ESQL.

Examples.

select current_timestamp from rdb$database
-- returns e.g. 2008-08-13 14:20:19.6170

select current_timestamp(2) from rdb$database
-- returns e.g. 2008-08-13 14:20:23.1200

Notes.

• The default precision of CURRENT_TIME is still 0 decimals, so in Firebird 2.0 and up
CURRENT_TIMESTAMP is no longer the exact sum of CURRENT_DATE and CURRENT_TIME,
unless you explicitly specify a precision.

• Within a PSQL module (procedure, trigger or executable block), the value of
CURRENT_TIMESTAMP will remain constant every time it is read. If multiple modules call or
trigger each other, the value will remain constant throughout the duration of the outermost module.
If you need a progressing value in PSQL (e.g. to measure time intervals), use 'NOW'.

CURRENT_TRANSACTION

Available in. DSQL, PSQL

Added in. 1.5

Description. CURRENT_TRANSACTION contains the unique identifier of the current transaction.

Type. INTEGER

Examples.

select current_transaction from rdb$database

New.Txn_ID = current_transaction;

The value of CURRENT_TRANSACTION is stored on the database header page and reset to 0 upon
restore. It is incremented with every new transaction.

CURRENT_USER

Available in. DSQL, PSQL

Added in. 1.0

Built-in functions and variables

75

Description. CURRENT_USER is a context variable containing the name of the currently connected
user. It is fully equivalent to USER.

Type. VARCHAR(31)

Example.

create trigger bi_customers for customers before insert as
begin
 New.added_by = CURRENT_USER;
 New.purchases = 0;
end

DELETING

Available in. PSQL

Added in. 1.5

Description. Available in triggers only, DELETING indicates if the trigger fired because of a
DELETE operation. Intended for use in multi-action triggers.

Type. boolean

Example.

if (deleting) then
begin
 insert into Removed_Cars (id, make, model, removed)
 values (old.id, old.make, old.model, current_timestamp);
end

GDSCODE

Available in. PSQL

Added in. 1.5

Changed in. 2.0

Description. In a “WHEN ... DO” error handling block, the GDSCODE context variable contains the
numerical representation of the current Firebird error code. Prior to Firebird 2.0, GDSCODE was only
set in WHEN GDSCODE handlers. Now it may also be non-zero in WHEN ANY, WHEN SQLCODE
and WHEN EXCEPTION blocks, provided that the condition raising the error corresponds with a
Firebird error code. Outside error handlers, GDSCODE is always 0. Outside PSQL it doesn't exist at all.

Type. INTEGER

Example.

when gdscode grant_obj_notfound, gdscode grant_fld_notfound,
 gdscode grant_nopriv, gdscode grant_nopriv_on_base
do
begin
 execute procedure log_grant_error(gdscode);
 exit;
end

Please notice: After WHEN GDSCODE, you must use symbolic names like grant_obj_notfound etc.
But the GDSCODE context variable is an INTEGER. If you want to compare it against a certain error,
you have to use the numeric value, e.g. 335544551 for grant_obj_notfound.

Built-in functions and variables

76

INSERTING

Available in. PSQL

Added in. 1.5

Description. Available in triggers only, INSERTING indicates if the trigger fired because of an
INSERT operation. Intended for use in multi-action triggers.

Type. boolean

Example.

if (inserting or updating) then
begin
 if (new.serial_num is null) then
 new.serial_num = gen_id(gen_serials, 1);
end

NEW

Available in. PSQL, triggers only

Changed in. 1.5, 2.0

Description. NEW contains the new version of a database record that has just been inserted or
updated. Starting with Firebird 2.0 it is read-only in AFTER triggers.

Type. Data row

Note

In multi-action triggers – introduced in Firebird 1.5 – NEW is always available. But if the
trigger is fired by a DELETE, there will be no new version of the record. In that situation,
reading from NEW will always return NULL; writing to it will cause a runtime exception.

'NOW'

Available in. DSQL, PSQL, ESQL

Changed in. 2.0

Description. 'NOW' is not a variable but a string literal. It is, however, special in the sense that
when you CAST() it to a date/time type, you will get the current date and/or time. The fractional part
of the time used to be always “.0000”, giving an effective seconds precision. Since Firebird 2.0 the
precision is 3 decimals, i.e. milliseconds. 'NOW' is case-insensitive, and the engine ignores leading
or trailing spaces when casting.

Note. Please be advised that these shorthand expressions are evaluated immediately at parse time
and stay the same as long as the statement remains prepared. Thus, even if a query is executed multiple
times, the value for e.g. “timestamp 'now'” won't change, no matter how much time passes. If you need
the value to progress (i.e. be evaluated upon every call), use a full cast.

Type. CHAR(3)

Examples.

select 'Now' from rdb$database
-- returns 'Now'

Built-in functions and variables

77

select cast('Now' as date) from rdb$database
-- returns e.g. 2008-08-13

select cast('now' as time) from rdb$database
-- returns e.g. 14:20:19.6170

select cast('NOW' as timestamp) from rdb$database
-- returns e.g. 2008-08-13 14:20:19.6170

Shorthand syntax for the last three statements:

select date 'Now' from rdb$database
select time 'now' from rdb$database
select timestamp 'NOW' from rdb$database

Notes.

• 'NOW' always returns the actual date/time, even in PSQL modules, where CURRENT_DATE,
CURRENT_TIME and CURRENT_TIMESTAMP return the same value throughout the duration of
the outermost routine. This makes 'NOW' useful for measuring time intervals in triggers, procedures
and executable blocks.

• Except in the situation mentioned above, reading CURRENT_DATE, CURRENT_TIME
and CURRENT_TIMESTAMP is generally preferable to casting 'NOW'. Be aware though
that CURRENT_TIME defaults to seconds precision; to get milliseconds precision, use
CURRENT_TIME(3).

OLD

Available in. PSQL, triggers only

Changed in. 1.5, 2.0

Description. OLD contains the existing version of a database record just before a deletion or update.
Starting with Firebird 2.0 it is read-only.

Type. Data row

Note

In multi-action triggers – introduced in Firebird 1.5 – OLD is always available. But if the
trigger is fired by an INSERT, there is obviously no pre-existing version of the record.
In that situation, reading from OLD will always return NULL; writing to it will cause a
runtime exception.

ROW_COUNT

Available in. PSQL

Added in. 1.5

Changed in. 2.0

Description. The ROW_COUNT context variable contains the number of rows affected by the most
recent DML statement (INSERT, UPDATE, DELETE, SELECT or FETCH) in the current trigger,
stored procedure or executable block.

Type. INTEGER

Example.

Built-in functions and variables

78

update Figures set Number = 0 where id = :id;
if (row_count = 0) then
 insert into Figures (id, Number) values (:id, 0);

Behaviour with SELECT and FETCH.

• After a singleton SELECT, ROW_COUNT is 1 if a data row was retrieved and 0 otherwise.

• In a FOR SELECT loop, ROW_COUNT is incremented with every iteration (starting at 0 before the
first).

• After a FETCH from a cursor, ROW_COUNT is 1 if a data row was retrieved and 0 otherwise.
Fetching more records from the same cursor does not increment ROW_COUNT beyond 1.

• In Firebird 1.5.x, ROW_COUNT is 0 after any type of SELECT statement.

Note

ROW_COUNT cannot be used to determine the number of rows affected by an EXECUTE
STATEMENT or EXECUTE PROCEDURE command.

SQLCODE

Available in. PSQL

Added in. 1.5

Changed in. 2.0

Deprecated in. 2.5.1

Description. In a “WHEN ... DO” error handling block, the SQLCODE context variable contains
the current SQL error code. Prior to Firebird 2.0, SQLCODE was only set in WHEN SQLCODE and
WHEN ANY handlers. Now it may also be non-zero in WHEN GDSCODE and WHEN EXCEPTION
blocks, provided that the condition raising the error corresponds with an SQL error code. Outside error
handlers, SQLCODE is always 0. Outside PSQL it doesn't exist at all.

Type. INTEGER

Example.

when any
do
begin
 if (sqlcode <> 0) then
 Msg = 'An SQL error occurred!';
 else
 Msg = 'Something bad happened!';
 exception ex_custom Msg;
end

Important notice. SQLCODE is now deprecated in favour of the SQL-2003-compliant SQLSTATE
status code. Support for SQLCODE and WHEN SQLCODE will be discontinued in some future version
of Firebird.

SQLSTATE

Available in. PSQL

Added in. 2.5.1

Built-in functions and variables

79

Description. In a “WHEN ... DO” error handler, the SQLSTATE context variable contains the 5-
character, SQL-2003-compliant status code resulting from the statement that raised the error. Outside
error handlers, SQLSTATE is always '00000'. Outside PSQL it is not available at all.

Type. CHAR(5)

Example.

when any
do
begin
 Msg = case sqlstate
 when '22003' then 'Numeric value out of range.'
 when '22012' then 'Division by zero.'
 when '23000' then 'Integrity constraint violation.'
 else 'Something bad happened! SQLSTATE = ' || sqlstate
 end;
 exception ex_custom Msg;
end

Notes.

• SQLSTATE is destined to replace SQLCODE. The latter is now deprecated in Firebird and will
disappear in some future version.

• Firebird does not (yet) support the syntax “WHEN SQLSTATE ... DO”. You have to use WHEN
ANY and test the SQLSTATE variable within the handler.

• Each SQLSTATE code is the concatenation of a 2-character class and a 3-character subclass.
Classes 00 (successful completion), 01 (warning) and 02 (no data) represent completion conditions.
Every status code outside these classes is an exception. Because classes 00, 01 and 02 don't raise
an error, they won't ever show up in the SQLSTATE variable.

• For a complete listing of SQLSTATE codes, consult the Appendix to the Firebird 2.5 Release Notes
[http://www.firebirdsql.org/rlsnotesh/rlsnotes25.html#rnfb25-appx-sqlstates].

'TODAY'

Available in. DSQL, PSQL, ESQL

Description. 'TODAY' is not a variable but a string literal. It is, however, special in the sense that
when you CAST() it to a date/time type, you will get the current date. 'TODAY' is case-insensitive,
and the engine ignores leading or trailing spaces when casting.

Type. CHAR(5)

Examples.

select 'Today' from rdb$database
 -- returns 'Today'

select cast('Today' as date) from rdb$database
 -- returns e.g. 2011-10-03

select cast('TODAY' as timestamp) from rdb$database
 -- returns e.g. 2011-10-03 00:00:00.0000

Shorthand syntax for the last two statements:

select date 'Today' from rdb$database
 select timestamp 'TODAY' from rdb$database

http://www.firebirdsql.org/rlsnotesh/rlsnotes25.html#rnfb25-appx-sqlstates
http://www.firebirdsql.org/rlsnotesh/rlsnotes25.html#rnfb25-appx-sqlstates

Built-in functions and variables

80

Notes.

• 'TODAY' always returns the actual date, even in PSQL modules, where CURRENT_DATE,
CURRENT_TIME and CURRENT_TIMESTAMP return the same value throughout the duration
of the outermost routine. This makes 'TODAY' useful for measuring time intervals in triggers,
procedures and executable blocks (at least if your procedures are running for days).

• Except in the situation mentioned above, reading CURRENT_DATE, is generally preferable to
casting 'NOW'.

'TOMORROW'

Available in. DSQL, PSQL, ESQL

Description. 'TOMORROW' is not a variable but a string literal. It is, however, special in the sense
that when you CAST() it to a date/time type, you will get the date of the next day. See also 'TODAY'.

Type. CHAR(8)

Examples.

select 'Tomorrow' from rdb$database
 -- returns 'Tomorrow'

select cast('Tomorrow' as date) from rdb$database
 -- returns e.g. 2011-10-04

select cast('TOMORROW' as timestamp) from rdb$database
 -- returns e.g. 2011-10-04 00:00:00.0000

Shorthand syntax for the last two statements:

select date 'Tomorrow' from rdb$database
 select timestamp 'TOMORROW' from rdb$database

UPDATING

Available in. PSQL

Added in. 1.5

Description. Available in triggers only, UPDATING indicates if the trigger fired because of an
UPDATE operation. Intended for use in multi-action triggers.

Type. boolean

Example.

if (inserting or updating) then
begin
 if (new.serial_num is null) then
 new.serial_num = gen_id(gen_serials, 1);
end

'YESTERDAY'

Available in. DSQL, PSQL, ESQL

Description. 'YESTERDAY' is not a variable but a string literal. It is, however, special in the
sense that when you CAST() it to a date/time type, you will get the date of the day before. See also
'TODAY'.

Built-in functions and variables

81

Type. CHAR(9)

Examples.

select 'Yesterday' from rdb$database
 -- returns 'Tomorrow'

select cast('Yesterday as date) from rdb$database
 -- returns e.g. 2011-10-02

select cast('YESTERDAY' as timestamp) from rdb$database
 -- returns e.g. 2011-10-02 00:00:00.0000

Shorthand syntax for the last two statements:

select date 'Yesterday' from rdb$database
 select timestamp 'YESTERDAY' from rdb$database

USER

Available in. DSQL, PSQL

Added in. InterBase

Description. USER is a context variable containing the name of the currently connected user. It
is fully equivalent to CURRENT_USER.

Type. VARCHAR(31)

Example.

create trigger bi_customers for customers before insert as
begin
 New.added_by = USER;
 New.purchases = 0;
end

Scalar functions

ABS()
Available in. DSQL, PSQL

Added in. 2.1

Description. Returns the absolute value of the argument.

Result type. Numerical

Syntax.

ABS (number)

Important

If the external function ABS is declared in your database, it will override the internal
function. To make the internal function available, DROP or ALTER the external function
(UDF).

Built-in functions and variables

82

ACOS()
Available in. DSQL, PSQL

Added in. 2.1

Description. Returns the arc cosine of the argument.

Result type. DOUBLE PRECISION

Syntax.

ACOS (number)

• The result is an angle in the range [0, #].

• If the argument is outside the range [-1, 1], NaN is returned.

Important

If the external function ACOS is declared in your database, it will override the internal
function. To make the internal function available, DROP or ALTER the external function
(UDF).

ASCII_CHAR()
Available in. DSQL, PSQL

Added in. 2.1

Description. Returns the ASCII character corresponding to the number passed in the argument.

Result type. [VAR]CHAR(1) CHARACTER SET NONE

Syntax.

ASCII_CHAR (<code>)

 <code> ::= an integer in the range [0..255]

Important

• If the external function ASCII_CHAR is declared in your database, it will override
the internal function. To make the internal function available, DROP or ALTER the
external function (UDF).

• If you are used to the behaviour of the ASCII_CHAR UDF, which returns an empty
string if the argument is 0, please notice that the internal function correctly returns a
character with ASCII code 0 here.

ASCII_VAL()
Available in. DSQL, PSQL

Added in. 2.1

Description. Returns the ASCII code of the character passed in.

Result type. SMALLINT

Built-in functions and variables

83

Syntax.

ASCII_VAL (ch)

 ch ::= a [VAR]CHAR or text BLOB of max. 32767 bytes

• If the argument is a string with more than one character, the ASCII code of the
first character is returned.

• If the argument is an empty string, 0 is returned.

• If the argument is NULL, NULL is returned.

• If the first character of the argument string is multi-byte, an error is raised. (A
bug in Firebird 2.1–2.1.3 and 2.5 causes an error to be raised if any character in
the string is multi-byte. This is fixed in versions 2.1.4 and 2.5.1.)

Important

If the external function ASCII_VAL is declared in your database, it will override the
internal function. To make the internal function available, DROP or ALTER the external
function (UDF).

ASIN()
Available in. DSQL, PSQL

Added in. 2.1

Description. Returns the arc sine of the argument.

Result type. DOUBLE PRECISION

Syntax.

ASIN (number)

• The result is an angle in the range [-#/2, #/2].

• If the argument is outside the range [-1, 1], NaN is returned.

Important

If the external function ASIN is declared in your database, it will override the internal
function. To make the internal function available, DROP or ALTER the external function
(UDF).

ATAN()
Available in. DSQL, PSQL

Added in. 2.1

Description. Returns the arc tangent of the argument.

Result type. DOUBLE PRECISION

Syntax.

ATAN (number)

Built-in functions and variables

84

• The result is an angle in the range <-#/2, #/2>.

Important

If the external function ATAN is declared in your database, it will override the internal
function. To make the internal function available, DROP or ALTER the external function
(UDF).

ATAN2()
Available in. DSQL, PSQL

Added in. 2.1

Description. Returns the angle whose sine-to-cosine ratio is given by the two arguments, and
whose sine and cosine signs correspond to the signs of the arguments. This allows results across the
entire circle, including the angles -#/2 and #/2.

Result type. DOUBLE PRECISION

Syntax.

ATAN2 (y, x)

• The result is an angle in the range [-#, #].

• If x is negative, the result is # if y is 0, and -# if y is -0.

• If both y and x are 0, the result is meaningless. Starting with Firebird 3, an error
will be raised if both arguments are 0.

Important

If the external function ATAN2 is declared in your database, it will override the internal
function. To make the internal function available, DROP or ALTER the external function
(UDF).

Notes.

• A fully equivalent description of this function is the following: ATAN2(y, x) is the angle between
the positive X-axis and the line from the origin to the point (x, y). This also makes it obvious that
ATAN2(0, 0) is undefined.

• If x is greater than 0, ATAN2(y, x) is the same as ATAN(y/x).

• If both sine and cosine of the angle are already known, ATAN2(sin, cos) gives the angle.

BIN_AND()
Available in. DSQL, PSQL

Added in. 2.1

Description. Returns the result of the bitwise AND operation on the argument(s).

Result type. INTEGER or BIGINT

Syntax.

BIN_AND (number [, number ...])

Built-in functions and variables

85

Important

If the external function BIN_AND is declared in your database, it will override the
internal function. To make the internal function available, DROP or ALTER the external
function (UDF).

BIN_OR()
Available in. DSQL, PSQL

Added in. 2.1

Description. Returns the result of the bitwise OR operation on the argument(s).

Result type. INTEGER or BIGINT

Syntax.

BIN_OR (number [, number ...])

Important

If the external function BIN_OR is declared in your database, it will override the internal
function. To make the internal function available, DROP or ALTER the external function
(UDF).

BIN_SHL()
Available in. DSQL, PSQL

Added in. 2.1

Description. Returns the first argument bitwise left-shifted by the second argument, i.e. a << b
or a·2^b.

Result type. BIGINT

Syntax.

BIN_SHL (number, shift)

BIN_SHR()
Available in. DSQL, PSQL

Added in. 2.1

Description. Returns the first argument bitwise right-shifted by the second argument, i.e. a >>
b or a/2^b.

Result type. BIGINT

Syntax.

BIN_SHR (number, shift)

• The operation performed is an arithmetic right shift (SAR), meaning that the sign
of the first operand is always preserved.

Built-in functions and variables

86

BIN_XOR()
Available in. DSQL, PSQL

Added in. 2.1

Description. Returns the result of the bitwise XOR operation on the argument(s).

Result type. INTEGER or BIGINT

Syntax.

BIN_XOR (number [, number ...])

Important

If the external function BIN_XOR is declared in your database, it will override the
internal function. To make the internal function available, DROP or ALTER the external
function (UDF).

BIT_LENGTH()
Available in. DSQL, PSQL

Added in. 2.0

Changed in. 2.1

Description. Gives the length in bits of the input string. For multi-byte character sets, this may be
less than the number of characters times 8 times the “formal” number of bytes per character as found
in RDB$CHARACTER_SETS.

Note

With arguments of type CHAR, this function takes the entire formal string length (e.g.
the declared length of a field or variable) into account. If you want to obtain the “logical”
bit length, not counting the trailing spaces, right-TRIM the argument before passing it
to BIT_LENGTH.

Result type. INTEGER

Syntax.

BIT_LENGTH (str)

BLOB support. Since Firebird 2.1, this function fully supports text BLOBs of any length and
character set.

Examples.

select bit_length('Hello!') from rdb$database
 -- returns 48

select bit_length(_iso8859_1 'Grüß di!') from rdb$database
 -- returns 64: ü and ß take up one byte each in ISO8859_1

select bit_length
 (cast (_iso8859_1 'Grüß di!' as varchar(24) character set utf8))
 from rdb$database
 -- returns 80: ü and ß take up two bytes each in UTF8

Built-in functions and variables

87

select bit_length
 (cast (_iso8859_1 'Grüß di!' as char(24) character set utf8))
 from rdb$database
 -- returns 208: all 24 CHAR positions count, and two of them are 16-bit

See also. OCTET_LENGTH(), CHARACTER_LENGTH()

CAST()
Available in. DSQL, ESQL, PSQL

Added in. IB

Changed in. 2.0, 2.1, 2.5

Description. CAST converts an expression to the desired datatype or domain. If the conversion
is not possible, an error is raised.

Result type. User-chosen.

Syntax.

CAST (expression AS <target_type>)

 <target_type> ::= sql_datatype
 | [TYPE OF] domain
 | TYPE OF COLUMN relname.colname

Shorthand syntax.

Alternative syntax, supported only when casting a string literal to a DATE, TIME
or TIMESTAMP:

datatype 'date/timestring'

This syntax was already available in InterBase, but was never properly documented.
Please notice: The shorthand syntax is evaluated immediately at parse time, causing
the value to stay the same until the statement is unprepared. For datetime literals like
'12-Oct-2012' this doesn't make any difference. But for the pseudo-variables
'NOW', 'YESTERDAY', 'TODAY' and 'TOMORROW' this may not be what you
want. If you need the value to be evaluated at every call, use CAST().

Examples.

A full-syntax cast:

select cast ('12' || '-June-' || '1959' as date) from rdb$database

A shorthand string-to-date cast:

update People set AgeCat = 'Old'
 where BirthDate < date '1-Jan-1943'

Notice that you can drop even the shorthand cast from the example above, as the
engine will understand from the context (comparison to a DATE field) how to
interpret the string:

update People set AgeCat = 'Old'
 where BirthDate < '1-Jan-1943'

But this is not always possible. The cast below cannot be dropped, otherwise the
engine would find itself with an integer to be subtracted from a string:

Built-in functions and variables

88

select date 'today' - 7 from rdb$database

The following table shows the type conversions possible with CAST.

Table 7.1. Possible CASTs

From To

Numeric types Numeric types
[VAR]CHAR
BLOB

[VAR]CHAR
BLOB

[VAR]CHAR
BLOB
Numeric types
DATE
TIME
TIMESTAMP

DATE
TIME

[VAR]CHAR
BLOB
TIMESTAMP

TIMESTAMP [VAR]CHAR
BLOB
DATE
TIME

Keep in mind that sometimes information is lost, for instance when you cast a TIMESTAMP
to a DATE. Also, the fact that types are CAST-compatible is in itself no guarantee that a
conversion will succeed. “CAST(123456789 as SMALLINT)” will definitely result in an error, as will
“CAST('Judgement Day' as DATE)”.

Casting input fields. Since Firebird 2.0, you can cast statement parameters to a datatype:

cast (? as integer)

This gives you control over the type of input field set up by the engine. Please notice that with statement
parameters, you always need a full-syntax cast – shorthand casts are not supported.

Casting to a domain or its type. Firebird 2.1 and above support casting to a domain or its base
type. When casting to a domain, any constraints (NOT NULL and/or CHECK) declared for the domain
must be satisfied or the cast will fail. Please be aware that a CHECK passes if it evaluates to TRUE
or NULL! So, given the following statements:

create domain quint as int check (value >= 5000)
 select cast (2000 as quint) from rdb$database -- (1)
 select cast (8000 as quint) from rdb$database -- (2)
 select cast (null as quint) from rdb$database -- (3)

only cast number (1) will result in an error.

When the TYPE OF modifier is used, the expression is cast to the base type of the domain, ignoring
any constraints. With domain quint defined as above, the following two casts are equivalent and will
both succeed:

select cast (2000 as type of quint) from rdb$database
 select cast (2000 as int) from rdb$database

If TYPE OF is used with a (VAR)CHAR type, its character set and collation are retained:

create domain iso20 varchar(20) character set iso8859_1;

Built-in functions and variables

89

 create domain dunl20 varchar(20) character set iso8859_1 collate du_nl;
 create table zinnen (zin varchar(20));
 commit;
 insert into zinnen values ('Deze');
 insert into zinnen values ('Die');
 insert into zinnen values ('die');
 insert into zinnen values ('deze');

 select cast(zin as type of iso20) from zinnen order by 1;
 -- returns Deze -> Die -> deze -> die

 select cast(zin as type of dunl20) from zinnen order by 1;
 -- returns deze -> Deze -> die -> Die

Warning

If a domain's definition is changed, existing CASTs to that domain or its type may
become invalid. If these CASTs occur in PSQL modules, their invalidation may be
detected. See the note The RDB$VALID_BLR field, near the end of this document.

Casting to a column's type. In Firebird 2.5 and above, it is possible to cast expressions to the
type of an existing table or view column. Only the type itself is used; in the case of string types, this
includes the character set but not the collation. Constraints and default values of the source column
are not applied.

create table ttt (
 s varchar(40) character set utf8 collate unicode_ci_ai
);
 commit;

 select cast ('Jag har många vänner' as type of column ttt.s) from rdb$database;

Warnings

• For text types, character set and collation are preserved by the cast – just as when
casting to a domain. However, due to a bug, the collation is not always taken into
consideration when comparisons (e.g. equality tests) are made. In cases where the
collation is of importance, test your code thoroughly before deploying! This bug is
fixed for Firebird 3.

• If a column's definition is altered, existing CASTs to that column's type may become
invalid. If these CASTs occur in PSQL modules, their invalidation may be detected.
See the note The RDB$VALID_BLR field, near the end of this document.

Casting BLOBs. Successful casting to and from BLOBs is possible since Firebird 2.1.

CEIL(), CEILING()
Available in. DSQL, PSQL

Added in. 2.1

Description. Returns the smallest whole number greater than or equal to the argument.

Result type. BIGINT or DOUBLE PRECISION

Syntax.

CEIL[ING] (number)

Built-in functions and variables

90

Important

If the external function CEILING is declared in your database, it will override the
internal function CEILING (but not CEIL). To make the internal function available,
DROP or ALTER the external function (UDF).

See also. FLOOR()

CHAR_LENGTH(), CHARACTER_LENGTH()
Available in. DSQL, PSQL

Added in. 2.0

Changed in. 2.1

Description. Gives the length in characters of the input string.

Note

With arguments of type CHAR, this function returns the formal string length (i.e.
the declared length of a field or variable). If you want to obtain the “logical”
length, not counting the trailing spaces, right-TRIM the argument before passing it to
CHAR[ACTER]_LENGTH.

Result type. INTEGER

Syntax.

CHAR_LENGTH (str)
 CHARACTER_LENGTH (str)

BLOB support. Since Firebird 2.1, this function fully supports text BLOBs of any length and
character set.

Examples.

select char_length('Hello!') from rdb$database
 -- returns 6

select char_length(_iso8859_1 'Grüß di!') from rdb$database
 -- returns 8

select char_length
 (cast (_iso8859_1 'Grüß di!' as varchar(24) character set utf8))
 from rdb$database
 -- returns 8; the fact that ü and ß take up two bytes each is irrelevant

select char_length
 (cast (_iso8859_1 'Grüß di!' as char(24) character set utf8))
 from rdb$database
 -- returns 24: all 24 CHAR positions count

See also. BIT_LENGTH(), OCTET_LENGTH()

CHAR_TO_UUID()
Available in. DSQL, PSQL

Added in. 2.5

Built-in functions and variables

91

Description. Converts a human-readable 36-char UUID string to the corresponding 16-byte UUID.

Result type. CHAR(16) CHARACTER SET OCTETS

Syntax.

CHAR_TO_UUID (ascii_uuid)

 ascii_uuid ::= a string of length 36 with:
 * '-' (hyphen) at positions 9, 14, 19 and 24;
 * valid hex digits at every other position.

Examples.

select char_to_uuid('A0bF4E45-3029-2a44-D493-4998c9b439A3') from rdb$database
 -- returns A0BF4E4530292A44D4934998C9B439A3 (16-byte string)

 select char_to_uuid('A0bF4E45-3029-2A44-X493-4998c9b439A3') from rdb$database
 -- error: -Human readable UUID argument for CHAR_TO_UUID must
 -- have hex digit at position 20 instead of "X (ASCII 88)"

See also. UUID_TO_CHAR(), GEN_UUID()

COALESCE()
Available in. DSQL, PSQL

Added in. 1.5

Description. The COALESCE function takes two or more arguments and returns the value of the
first non-NULL argument. If all the arguments evaluate to NULL, the result is NULL.

Result type. Depends on input.

Syntax.

COALESCE (<exp1>, <exp2> [, <expN> ...])

Example.

select
 coalesce (Nickname, FirstName, 'Mr./Mrs.') || ' ' || LastName
 as FullName
 from Persons

This example picks the Nickname from the Persons table. If it happens to be NULL, it goes on to
FirstName. If that too is NULL, “Mr./Mrs.” is used. Finally, it adds the family name. All in all, it tries
to use the available data to compose a full name that is as informal as possible. Notice that this scheme
only works if absent nicknames and first names are really NULL: if one of them is an empty string
instead, COALESCE will happily return that to the caller.

Note

In Firebird 1.0.x, where COALESCE is not available, you can accomplish the same with
the *nvl external functions.

COS()
Available in. DSQL, PSQL

Built-in functions and variables

92

Added in. 2.1

Description. Returns an angle's cosine. The argument must be given in radians.

Result type. DOUBLE PRECISION

Syntax.

COS (angle)

• Any non-NULL result is – obviously – in the range [-1, 1].

Important

If the external function COS is declared in your database, it will override the internal
function. To make the internal function available, DROP or ALTER the external function
(UDF).

COSH()
Available in. DSQL, PSQL

Added in. 2.1

Description. Returns the hyperbolic cosine of the argument.

Result type. DOUBLE PRECISION

Syntax.

COSH (number)

• Any non-NULL result is in the range [1, INF].

Important

If the external function COSH is declared in your database, it will override the internal
function. To make the internal function available, DROP or ALTER the external function
(UDF).

COT()
Available in. DSQL, PSQL

Added in. 2.1

Description. Returns an angle's cotangent. The argument must be given in radians.

Result type. DOUBLE PRECISION

Syntax.

COT (angle)

Important

If the external function COT is declared in your database, it will override the internal
function. To make the internal function available, DROP or ALTER the external function
(UDF).

Built-in functions and variables

93

DATEADD()
Available in. DSQL, PSQL

Added in. 2.1

Changed in. 2.5

Description. Adds the specified number of years, months, weeks, days, hours, minutes, seconds
or milliseconds to a date/time value. (The WEEK unit is new in 2.5.)

Result type. DATE, TIME or TIMESTAMP

Syntax.

DATEADD (<args>)

 <args> ::= <amount> <unit> TO <datetime>
 | <unit>, <amount>, <datetime>

 <amount> ::= an integer expression (negative to subtract)
 <unit> ::= YEAR | MONTH | WEEK | DAY
 | HOUR | MINUTE | SECOND | MILLISECOND
 <datetime> ::= a DATE, TIME or TIMESTAMP expression

• The result type is determined by the third argument.

• With TIMESTAMP and DATE arguments, all units can be used. (Prior to Firebird
2.5, units smaller than DAY were disallowed for DATEs.)

• With TIME arguments, only HOUR, MINUTE, SECOND and MILLISECOND
can be used.

Examples.

dateadd (28 day to current_date)
 dateadd (-6 hour to current_time)
 dateadd (month, 9, DateOfConception)
 dateadd (-38 week to DateOfBirth)
 dateadd (minute, 90, time 'now')
 dateadd (? year to date '11-Sep-1973')

DATEDIFF()
Available in. DSQL, PSQL

Added in. 2.1

Changed in. 2.5

Description. Returns the number of years, months, weeks, days, hours, minutes, seconds or
milliseconds elapsed between two date/time values. (The WEEK unit is new in 2.5.)

Result type. BIGINT

Syntax.

DATEDIFF (<args>)

 <args> ::= <unit> FROM <moment1> TO <moment2>

Built-in functions and variables

94

 | <unit>, <moment1>, <moment2>

 <unit> ::= YEAR | MONTH | WEEK | DAY
 | HOUR | MINUTE | SECOND | MILLISECOND
 <momentN> ::= a DATE, TIME or TIMESTAMP expression

• DATE and TIMESTAMP arguments can be combined. No other mixes are
allowed.

• With TIMESTAMP and DATE arguments, all units can be used. (Prior to Firebird
2.5, units smaller than DAY were disallowed for DATEs.)

• With TIME arguments, only HOUR, MINUTE, SECOND and MILLISECOND
can be used.

Computation.

• DATEDIFF doesn't look at any smaller units than the one specified in the first argument. As a result,
• “datediff (year, date '1-Jan-2009', date '31-Dec-2009')” returns 0, but
• “datediff (year, date '31-Dec-2009', date '1-Jan-2010')” returns 1

• It does, however, look at all the bigger units. So:
• “datediff (day, date '26-Jun-1908', date '11-Sep-1973')” returns 23818

• A negative result value indicates that moment2 lies before moment1.

Examples.

datediff (hour from current_timestamp to timestamp '12-Jun-2059 06:00')
 datediff (minute from time '0:00' to current_time)
 datediff (month, current_date, date '1-1-1900')
 datediff (day from current_date to cast(? as date))

DECODE()
Available in. DSQL, PSQL

Added in. 2.1

Description. DECODE is a shortcut for the so-called “simple CASE” construct, in which a
given expression is compared to a number of other expressions until a match is found. The result is
determined by the value listed after the matching expression. If no match is found, the default result
is returned, if present. Otherwise, NULL is returned.

Result type. Varies

Syntax.

DECODE (<test-expr>,
 <expr>, result
 [, <expr>, result ...]
 [, defaultresult])

The equivalent CASE construct:

CASE <test-expr>
 WHEN <expr> THEN result
 [WHEN <expr> THEN result ...]
 [ELSE defaultresult]
 END

Built-in functions and variables

95

Caution

Matching is done with the “=” operator, so if <test-expr> is
NULL, it won't match any of the <expr>s, not even those that are
NULL.

Example.

select name,
 age,
 decode(upper(sex),
 'M', 'Male',
 'F', 'Female',
 'Unknown'),
 religion
 from people

See also. CASE, Simple CASE

EXP()
Available in. DSQL, PSQL

Added in. 2.1

Description. Returns the natural exponential, enumber

Result type. DOUBLE PRECISION

Syntax.

EXP (number)

See also. LN()

EXTRACT()
Available in. DSQL, ESQL, PSQL

Added in. IB 6

Changed in. 2.1

Description. Extracts and returns an element from a DATE, TIME or TIMESTAMP expression.
This function was already added in InterBase 6, but not documented in the Language Reference at
the time.

Result type. SMALLINT or NUMERIC

Syntax.

EXTRACT (<part> FROM <datetime>)

 <part> ::= YEAR | MONTH | WEEK
 | DAY | WEEKDAY | YEARDAY
 | HOUR | MINUTE | SECOND | MILLISECOND
 <datetime> ::= a DATE, TIME or TIMESTAMP expression

The returned data types and possible ranges are shown in the table below. If you try to extract a part
that isn't present in the date/time argument (e.g. SECOND from a DATE or YEAR from a TIME),
an error occurs.

Built-in functions and variables

96

Table 7.2. Types and ranges of EXTRACT results

Part Type Range Comment

YEAR SMALLINT 1–9999

MONTH SMALLINT 1–12

WEEK SMALLINT 1–53

DAY SMALLINT 1–31

WEEKDAY SMALLINT 0–6 0 = Sunday

YEARDAY SMALLINT 0–365 0 = January 1

HOUR SMALLINT 0–23

MINUTE SMALLINT 0–59

SECOND NUMERIC(9,4) 0.0000–59.9999 includes millisecond as
fraction

MILLISECOND NUMERIC(9,1) 0.0–999.9 broken in 2.1, 2.1.1

MILLISECOND

Added in. 2.1 (with bug)

Fixed in. 2.1.2

Description. Firebird 2.1 and up support extraction of the millisecond from a TIME or
TIMESTAMP. The datatype returned is NUMERIC(9,1).

Note

If you extract the millisecond from CURRENT_TIME, be aware that this variable
defaults to seconds precision, so the result will always be 0. Extract from
CURRENT_TIME(3) or CURRENT_TIMESTAMP to get milliseconds precision.

WEEK

Added in. 2.1

Description. Firebird 2.1 and up support extraction of the ISO-8601 week number from a DATE
or TIMESTAMP. ISO-8601 weeks start on a Monday and always have the full seven days. Week 1
is the first week that has a majority (at least 4) of its days in the new year. The first 1–3 days of the
year may belong to the last week (52 or 53) of the previous year. Likewise, a year's final 1–3 days
may belong to week 1 of the following year.

Caution

Be careful when combining WEEK and YEAR results. For instance, 30 December 2008
lies in week 1 of 2009, so “extract (week from date '30 Dec 2008')”
returns 1. However, extracting YEAR always gives the calendar year, which is 2008. In
this case, WEEK and YEAR are at odds with each other. The same happens when the
first days of January belong to the last week of the previous year.

Please also notice that WEEKDAY is not ISO-8601 compliant: it returns 0 for Sunday,
whereas ISO-8601 specifies 7.

FLOOR()
Available in. DSQL, PSQL

Built-in functions and variables

97

Added in. 2.1

Description. Returns the largest whole number smaller than or equal to the argument.

Result type. BIGINT or DOUBLE PRECISION

Syntax.

FLOOR (number)

Important

If the external function FLOOR is declared in your database, it will override the internal
function. To make the internal function available, DROP or ALTER the external function
(UDF).

See also. CEIL() / CEILING()

GEN_ID()
Available in. DSQL, ESQL, PSQL

Added in. IB

Description. Increments a generator or sequence and returns its new value. From Firebird 2.0
onward, the SQL-compliant NEXT VALUE FOR syntax is preferred, except when an increment other
than 1 is needed.

Result type. BIGINT

Syntax.

GEN_ID (generator-name, <step>)

 <step> ::= An integer expression.

Example.

new.rec_id = gen_id(gen_recnum, 1);

Warning

Unless you know very well what you are doing, using GEN_ID() with step values lower
than 1 may compromise your data's integrity.

See also. NEXT VALUE FOR, CREATE GENERATOR

GEN_UUID()
Available in. DSQL, PSQL

Added in. 2.1

Description. Returns a universally unique ID as a 16-byte character string.

Result type. CHAR(16) CHARACTER SET OCTETS

Syntax.

GEN_UUID ()

Built-in functions and variables

98

Example.

select gen_uuid() from rdb$database
 -- returns e.g. 017347BFE212B2479C00FA4323B36320 (16-byte string)

See also. UUID_TO_CHAR(), CHAR_TO_UUID()

HASH()
Available in. DSQL, PSQL

Added in. 2.1

Description. Returns a hash value for the input string. This function fully supports text BLOBs
of any length and character set.

Result type. BIGINT

Syntax.

HASH (string)

IIF()
Available in. DSQL, PSQL

Added in. 2.0

Description. IIF takes three arguments. If the first evaluates to true, the second argument is
returned; otherwise the third is returned.

Result type. Depends on input.

Syntax.

IIF (<condition>, ResultT, ResultF)

 <condition> ::= A boolean expression.

Example.

select iif(sex = 'M', 'Sir', 'Madam') from Customers

IIF(Cond, Result1, Result2) is a shortcut for “CASE WHEN Cond THEN Result1 ELSE
Result2 END”. You can also compare IIF to the ternary “? :” operator in C-like languages.

LEFT()
Available in. DSQL, PSQL

Added in. 2.1

Description. Returns the leftmost part of the argument string. The number of characters is given
in the second argument.

Result type. VARCHAR or BLOB

Syntax.

LEFT (string, length)

Built-in functions and variables

99

• This function fully supports text BLOBs of any length, including those with a
multi-byte character set.

• If string is a BLOB, the result is a BLOB. Otherwise, the result is a
VARCHAR(n) with n the length of the input string.

• If the length argument exceeds the string length, the input string is returned
unchanged.

• If the length argument is not a whole number, bankers' rounding (round-to-
even) is applied, i.e. 0.5 becomes 0, 1.5 becomes 2, 2.5 becomes 2, 3.5 becomes
4, etc.

See also. RIGHT()

LN()
Available in. DSQL, PSQL

Added in. 2.1

Description. Returns the natural logarithm of the argument.

Result type. DOUBLE PRECISION

Syntax.

LN (number)

• An error is raised if the argument is negative or 0.

Important

If the external function LN is declared in your database, it will override the internal
function. To make the internal function available, DROP or ALTER the external function
(UDF).

See also. EXP()

LOG()
Available in. DSQL, PSQL

Added in. 2.1

Changed in. 2.5

Description. Returns the x-based logarithm of y.

Result type. DOUBLE PRECISION

Syntax.

LOG (x, y)

• If either argument is 0 or below, an error is raised. (Before 2.5, this would result
in NaN, ±INF or 0, depending on the exact values of the arguments.)

• If both arguments are 1, NaN is returned.

• If x = 1 and y < 1, -INF is returned.

Built-in functions and variables

100

• If x = 1 and y > 1, INF is returned.

Important

If the external function LOG is declared in your database, it will override the internal
function. To make the internal function available, DROP or ALTER the external function
(UDF).

LOG10()
Available in. DSQL, PSQL

Added in. 2.1

Changed in. 2.5

Description. Returns the 10-based logarithm of the argument.

Result type. DOUBLE PRECISION

Syntax.

LOG10 (number)

• An error is raised if the argument is negative or 0. (In versions prior to 2.5, such
values would result in NaN and -INF, respectively.)

Important

If the external function LOG10 is declared in your database, it will override the internal
function. To make the internal function available, DROP or ALTER the external function
(UDF).

LOWER()
Available in. DSQL, ESQL, PSQL

Added in. 2.0

Changed in. 2.1

Description. Returns the lower-case equivalent of the input string. The exact result depends on
the character set. With ASCII or NONE for instance, only ASCII characters are lowercased; with
OCTETS, the entire string is returned unchanged. Since Firebird 2.1 this function also fully supports
text BLOBs of any length and character set.

Result type. (VAR)CHAR or BLOB

Syntax.

LOWER (str)

Note

Because LOWER is a reserved word, the internal function will take precedence even if
the external function by that name has also been declared. To call the (inferior!) external
function, use double-quotes and the exact capitalisation, as in "LOWER"(str).

Example.

Built-in functions and variables

101

select Sheriff from Towns
 where lower(Name) = 'cooper''s valley'

See also. UPPER

LPAD()
Available in. DSQL, PSQL

Added in. 2.1

Changed in. 2.5 (backported to 2.1.4)

Description. Left-pads a string with spaces or with a user-supplied string until a given length is
reached.

Result type. VARCHAR or BLOB

Syntax.

LPAD (str, endlen [, padstr])

• This function fully supports text BLOBs of any length and character set.

• If str is a BLOB, the result is a BLOB. Otherwise, the result is a
VARCHAR(endlen).

• If padstr is given and equals '' (empty string), no padding takes place.

• If endlen is less than the current string length, the string is truncated to endlen,
even if padstr is the empty string.

Important

If the external function LPAD is declared in your database, it will override the internal
function. To make the internal function available, DROP or ALTER the external function
(UDF).

Note

In Firebird 2.1–2.1.3, all non-BLOB results were of type VARCHAR(32765), which
made it advisable to cast them to a more modest size. This is no longer the case.

Examples.

lpad ('Hello', 12) -- returns ' Hello'
 lpad ('Hello', 12, '-') -- returns '-------Hello'
 lpad ('Hello', 12, '') -- returns 'Hello'
 lpad ('Hello', 12, 'abc') -- returns 'abcabcaHello'
 lpad ('Hello', 12, 'abcdefghij') -- returns 'abcdefgHello'
 lpad ('Hello', 2) -- returns 'He'
 lpad ('Hello', 2, '-') -- returns 'He'
 lpad ('Hello', 2, '') -- returns 'He'

Warning

When used on a BLOB, this function may need to load the entire object into memory.
Although it does try to limit memory consumption, this may affect performance if huge
BLOBs are involved.

See also. RPAD()

Built-in functions and variables

102

MAXVALUE()
Available in. DSQL, PSQL

Added in. 2.1

Description. Returns the maximum value from a list of numerical, string, or date/time expressions.
This function fully supports text BLOBs of any length and character set.

Result type. Varies

Syntax.

MAXVALUE (expr [, expr ...])

• If one or more expressions resolve to NULL, MAXVALUE returns NULL. This
behaviour differs from the aggregate function MAX.

See also. MINVALUE()

MINVALUE()
Available in. DSQL, PSQL

Added in. 2.1

Description. Returns the minimum value from a list of numerical, string, or date/time expressions.
This function fully supports text BLOBs of any length and character set.

Result type. Varies

Syntax.

MINVALUE (expr [, expr ...])

• If one or more expressions resolve to NULL, MINVALUE returns NULL. This
behaviour differs from the aggregate function MIN.

See also. MAXVALUE()

MOD()
Available in. DSQL, PSQL

Added in. 2.1

Description. Returns the remainder of an integer division.

Result type. INTEGER or BIGINT

Syntax.

MOD (a, b)

• Non-integer arguments are rounded before the division takes place. So, “7.5 mod
2.5” gives 2 (8 mod 3), not 0.

Important

If the external function MOD is declared in your database, it will override the internal
function. To make the internal function available, DROP or ALTER the external function
(UDF).

Built-in functions and variables

103

NULLIF()
Available in. DSQL, PSQL

Added in. 1.5

Description. NULLIF returns the value of the first argument, unless it is equal to the second. In
that case, NULL is returned.

Result type. Depends on input.

Syntax.

NULLIF (<exp1>, <exp2>)

Example.

select avg(nullif(Weight, -1)) from FatPeople

This will return the average weight of the persons listed in FatPeople, excluding those having a weight
of -1, since AVG skips NULL data. Presumably, -1 indicates “weight unknown” in this table. A plain
AVG(Weight) would include the -1 weights, thus skewing the result.

Note

In Firebird 1.0.x, where NULLIF is not available, you can accomplish the same with the
*nullif external functions.

OCTET_LENGTH()
Available in. DSQL, PSQL

Added in. 2.0

Changed in. 2.1

Description. Gives the length in bytes (octets) of the input string. For multi-byte character sets,
this may be less than the number of characters times the “formal” number of bytes per character as
found in RDB$CHARACTER_SETS.

Note

With arguments of type CHAR, this function takes the entire formal string length (e.g.
the declared length of a field or variable) into account. If you want to obtain the “logical”
byte length, not counting the trailing spaces, right-TRIM the argument before passing
it to OCTET_LENGTH.

Result type. INTEGER

Syntax.

OCTET_LENGTH (str)

BLOB support. Since Firebird 2.1, this function fully supports text BLOBs of any length and
character set.

Examples.

select octet_length('Hello!') from rdb$database
 -- returns 6

Built-in functions and variables

104

select octet_length(_iso8859_1 'Grüß di!') from rdb$database
 -- returns 8: ü and ß take up one byte each in ISO8859_1

select octet_length
 (cast (_iso8859_1 'Grüß di!' as varchar(24) character set utf8))
 from rdb$database
 -- returns 10: ü and ß take up two bytes each in UTF8

select octet_length
 (cast (_iso8859_1 'Grüß di!' as char(24) character set utf8))
 from rdb$database
 -- returns 26: all 24 CHAR positions count, and two of them are 2-byte

See also. BIT_LENGTH(), CHARACTER_LENGTH()

OVERLAY()
Available in. DSQL, PSQL

Added in. 2.1

Description. Overwrites part of a string with another string. By default, the number of characters
removed from the host string equals the length of the replacement string. With the optional fourth
argument, the user can specify a different number of characters to be removed.

Result type. VARCHAR or BLOB

Syntax.

OVERLAY (string PLACING replacement FROM pos [FOR length])

• This function supports BLOBs of any length.

• If string or replacement is a BLOB, the result is a BLOB. Otherwise,
the result is a VARCHAR(n) with n the sum of the lengths of string and
replacement.

• As usual in SQL string functions, pos is 1-based.

• If pos is beyond the end of string, replacement is placed directly after
string.

• If the number of characters from pos to the end of string is smaller than the
length of replacement (or than the length argument, if present), string
is truncated at pos and replacement placed after it.

• The effect of a “FOR 0” clause is that replacement is simply inserted into
string.

• If any argument is NULL, the result is NULL.

• If pos or length is not a whole number, bankers' rounding (round-to-even) is
applied, i.e. 0.5 becomes 0, 1.5 becomes 2, 2.5 becomes 2, 3.5 becomes 4, etc.

Examples.

overlay ('Goodbye' placing 'Hello' from 2) -- returns 'GHelloe'
 overlay ('Goodbye' placing 'Hello' from 5) -- returns 'GoodHello'
 overlay ('Goodbye' placing 'Hello' from 8) -- returns 'GoodbyeHello'
 overlay ('Goodbye' placing 'Hello' from 20) -- returns 'GoodbyeHello'

 overlay ('Goodbye' placing 'Hello' from 2 for 0) -- r. 'GHellooodbye'

Built-in functions and variables

105

 overlay ('Goodbye' placing 'Hello' from 2 for 3) -- r. 'GHellobye'
 overlay ('Goodbye' placing 'Hello' from 2 for 6) -- r. 'GHello'
 overlay ('Goodbye' placing 'Hello' from 2 for 9) -- r. 'GHello'

 overlay ('Goodbye' placing '' from 4) -- returns 'Goodbye'
 overlay ('Goodbye' placing '' from 4 for 3) -- returns 'Gooe'
 overlay ('Goodbye' placing '' from 4 for 20) -- returns 'Goo'

 overlay ('' placing 'Hello' from 4) -- returns 'Hello'
 overlay ('' placing 'Hello' from 4 for 0) -- returns 'Hello'
 overlay ('' placing 'Hello' from 4 for 20) -- returns 'Hello'

Warning

When used on a BLOB, this function may need to load the entire object into memory.
This may affect performance if huge BLOBs are involved.

See also. REPLACE()

PI()
Available in. DSQL, PSQL

Added in. 2.1

Description. Returns an approximation of the value of #.

Result type. DOUBLE PRECISION

Syntax.

PI ()

Important

If the external function PI is declared in your database, it will override the internal
function. To make the internal function available, DROP or ALTER the external function
(UDF).

POSITION()
Available in. DSQL, PSQL

Added in. 2.1

Description. Returns the (1-based) position of the first occurrence of a substring in a host string.
With the optional third argument, the search starts at a given offset, disregarding any matches that
may occur earlier in the string. If no match is found, the result is 0.

Result type. INTEGER

Syntax.

POSITION (<args>)

 <args> ::= substr IN string
 | substr, string [, startpos]

• The optional third argument is only supported in the second syntax (comma
syntax).

Built-in functions and variables

106

• The empty string is considered a substring of every string. Therefore, if substr
is '' (empty string) and string is not NULL, the result is:
• 1 if startpos is not given;
• startpos if startpos lies within string;
• 0 if startpos lies beyond the end of string.

Notice: A bug in Firebird 2.1–2.1.3 and 2.5 causes POSITION to always return
1 if substr is the empty string. This is fixed in 2.1.4 and 2.5.1.

• This function fully supports text BLOBs of any size and character set.

Examples.

position ('be' in 'To be or not to be') -- returns 4
 position ('be', 'To be or not to be') -- returns 4
 position ('be', 'To be or not to be', 4) -- returns 4
 position ('be', 'To be or not to be', 8) -- returns 17
 position ('be', 'To be or not to be', 18) -- returns 0
 position ('be' in 'Alas, poor Yorick!') -- returns 0

Warning

When used on a BLOB, this function may need to load the entire object into memory.
This may affect performance if huge BLOBs are involved.

POWER()
Available in. DSQL, PSQL

Added in. 2.1

Description. Returns x to the y'th power.

Result type. DOUBLE PRECISION

Syntax.

POWER (x, y)

• If x negative, an error is raised.

Important

If the external function POWER is declared in your database as power instead of the
default dPower, it will override the internal function. To make the internal function
available, DROP or ALTER the external function (UDF).

RAND()
Available in. DSQL, PSQL

Added in. 2.1

Description. Returns a random number between 0 and 1.

Result type. DOUBLE PRECISION

Syntax.

RAND ()

Built-in functions and variables

107

Important

If the external function RAND is declared in your database, it will override the internal
function. To make the internal function available, DROP or ALTER the external function
(UDF).

RDB$GET_CONTEXT()

Note

RDB$GET_CONTEXT and its counterpart RDB$SET_CONTEXT are actually
predeclared UDFs. They are listed here as internal functions because they are always
present – the user doesn't have to do anything to make them available.

Available in. DSQL, ESQL, PSQL

Added in. 2.0

Changed in. 2.1

Description. Retrieves the value of a context variable from one of the namespaces SYSTEM,
USER_SESSION and USER_TRANSACTION.

Result type. VARCHAR(255)

Syntax.

RDB$GET_CONTEXT ('<namespace>', '<varname>')

 <namespace> ::= SYSTEM | USER_SESSION | USER_TRANSACTION
 <varname> ::= A case-sensitive string of max. 80 characters

The namespaces. The USER_SESSION and USER_TRANSACTION namespaces are initially
empty. The user can create and set variables in them with RDB$SET_CONTEXT() and retrieve
them with RDB$GET_CONTEXT(). The SYSTEM namespace is read-only. It contains a number of
predefined variables, shown in the table below.

Table 7.3. Context variables in the SYSTEM namespace

DB_NAME Either the full path to the database or – if connecting via the path is
disallowed – its alias.

NETWORK_PROTOCOL The protocol used for the connection: 'TCPv4', 'WNET', 'XNET' or
NULL.

CLIENT_ADDRESS For TCPv4, this is the IP address. For XNET, the local process ID. For all
other protocols this variable is NULL.

CURRENT_USER Same as global CURRENT_USER variable.

CURRENT_ROLE Same as global CURRENT_ROLE variable.

SESSION_ID Same as global CURRENT_CONNECTION variable.

TRANSACTION_ID Same as global CURRENT_TRANSACTION variable.

ISOLATION_LEVEL The isolation level of the current transaction: 'READ COMMITTED',
'SNAPSHOT' or 'CONSISTENCY'.

ENGINE_VERSION The Firebird engine (server) version. Added in 2.1.

Return values and error behaviour. If the polled variable exists in the given namespace, its value
will be returned as a string of max. 255 characters. If the namespace doesn't exist or if you try to
access a non-existing variable in the SYSTEM namespace, an error is raised. If you poll a non-existing

Built-in functions and variables

108

variable in one of the other namespaces, NULL is returned. Both namespace and variable names must
be given as single-quoted, case-sensitive, non-NULL strings.

Examples.

select rdb$get_context('SYSTEM', 'DB_NAME') from rdb$database

New.UserAddr = rdb$get_context('SYSTEM', 'CLIENT_ADDRESS');

insert into MyTable (TestField)
 values (rdb$get_context('USER_SESSION', 'MyVar'))

See also. RDB$SET_CONTEXT()

RDB$SET_CONTEXT()

Note

RDB$SET_CONTEXT and its counterpart RDB$GET_CONTEXT are actually
predeclared UDFs. They are listed here as internal functions because they are always
present – the user doesn't have to do anything to make them available.

Available in. DSQL, ESQL, PSQL

Added in. 2.0

Description. Creates, sets or unsets a variable in one of the user-writable namespaces
USER_SESSION and USER_TRANSACTION.

Result type. INTEGER

Syntax.

RDB$SET_CONTEXT ('<namespace>', '<varname>', <value> | NULL)

 <namespace> ::= USER_SESSION | USER_TRANSACTION
 <varname> ::= A case-sensitive string of max. 80 characters
 <value> ::= A value of any type, as long as it's castable
 to a VARCHAR(255)

The namespaces. The USER_SESSION and USER_TRANSACTION namespaces are initially
empty. The user can create and set variables in them with RDB$SET_CONTEXT() and retrieve them
with RDB$GET_CONTEXT(). The USER_SESSION context is bound to the current connection.
Variables in USER_TRANSACTION only exist in the transaction in which they have been set. When
the transaction ends, the context and all the variables defined in it are destroyed.

Return values and error behaviour. The function returns 1 if the variable already existed before
the call and 0 if it didn't. To remove a variable from a context, set it to NULL. If the given namespace
doesn't exist, an error is raised. Both namespace and variable names must be entered as single-quoted,
case-sensitive, non-NULL strings.

Examples.

select rdb$set_context('USER_SESSION', 'MyVar', 493) from rdb$database

rdb$set_context('USER_SESSION', 'RecordsFound', RecCounter);

select rdb$set_context('USER_TRANSACTION', 'Savepoints', 'Yes')
 from rdb$database

Notes.

Built-in functions and variables

109

• The maximum number of variables in any single context is 1000.

• All USER_TRANSACTION variables will survive a ROLLBACK RETAIN or ROLLBACK TO
SAVEPOINT unaltered, no matter at which point during the transaction they were set.

• Due to its UDF-like nature, RDB$SET_CONTEXT can – in PSQL only – be called like a void
function, without assigning the result, as in the second example above. Regular internal functions
don't allow this type of use.

See also. RDB$GET_CONTEXT()

REPLACE()
Available in. DSQL, PSQL

Added in. 2.1

Description. Replaces all occurrences of a substring in a string.

Result type. VARCHAR or BLOB

Syntax.

REPLACE (str, find, repl)

• This function fully supports text BLOBs of any length and character set.

• If any argument is a BLOB, the result is a BLOB. Otherwise, the result is a
VARCHAR(n) with n calculated from the lengths of str, find and repl
in such a way that even the maximum possible number of replacements won't
overflow the field.

• If find is the empty string, str is returned unchanged.

• If repl is the empty string, all occurrences of find are deleted from str.

• If any argument is NULL, the result is always NULL, even if nothing would have
been replaced.

Examples.

replace ('Billy Wilder', 'il', 'oog') -- returns 'Boogly Woogder'
 replace ('Billy Wilder', 'il', '') -- returns 'Bly Wder'
 replace ('Billy Wilder', null, 'oog') -- returns NULL
 replace ('Billy Wilder', 'il', null) -- returns NULL
 replace ('Billy Wilder', 'xyz', null) -- returns NULL (!)
 replace ('Billy Wilder', 'xyz', 'abc') -- returns 'Billy Wilder'
 replace ('Billy Wilder', '', 'abc') -- returns 'Billy Wilder'

Warning

When used on a BLOB, this function may need to load the entire object into memory.
This may affect performance if huge BLOBs are involved.

See also. OVERLAY()

REVERSE()
Available in. DSQL, PSQL

Built-in functions and variables

110

Added in. 2.1

Description. Returns a string backwards.

Result type. VARCHAR

Syntax.

REVERSE (str)

Examples.

reverse ('spoonful') -- returns 'lufnoops'
 reverse ('Was it a cat I saw?') -- returns '?was I tac a ti saW'

Tip

This function comes in very handy if you want to group, search or order on string endings,
e.g. when dealing with domain names or email addresses:

create index ix_people_email on people
 computed by (reverse(email));

 select * from people
 where reverse(email) starting with reverse('.br');

RIGHT()
Available in. DSQL, PSQL

Added in. 2.1

Description. Returns the rightmost part of the argument string. The number of characters is given
in the second argument.

Result type. VARCHAR or BLOB

Syntax.

RIGHT (string, length)

• This function supports text BLOBs of any length, but has a bug in versions 2.1–
2.1.3 and 2.5 that makes it fail with text BLOBs larger than 1024 bytes that have
a multi-byte character set. This has been fixed in versions 2.1.4 and 2.5.1.

• If string is a BLOB, the result is a BLOB. Otherwise, the result is a
VARCHAR(n) with n the length of the input string.

• If the length argument exceeds the string length, the input string is returned
unchanged.

• If the length argument is not a whole number, bankers' rounding (round-to-
even) is applied, i.e. 0.5 becomes 0, 1.5 becomes 2, 2.5 becomes 2, 3.5 becomes
4, etc.

Warning

When used on a BLOB, this function may need to load the entire object into memory.
This may affect performance if huge BLOBs are involved.

Built-in functions and variables

111

Important

If the external function RIGHT is declared in your database as right instead of the
default sright, it will override the internal function. To make the internal function
available, DROP or ALTER the external function (UDF).

See also. LEFT()

ROUND()
Available in. DSQL, PSQL

Added in. 2.1

Description. Rounds a number to the nearest integer. If the fractional part is exactly 0.5, rounding
is upward for positive numbers and downward for negative numbers. With the optional scale
argument, the number can be rounded to powers-of-ten multiples (tens, hundreds, tenths, hundredths,
etc.) instead of just integers.

Result type. INTEGER, (scaled) BIGINT or DOUBLE

Syntax.

ROUND (<number> [, <scale>])

 <number> ::= a numerical expression
 <scale> ::= an integer specifying the number of decimal places
 toward which should be rounded, e.g.:
 2 for rounding to the nearest multiple of 0.01
 1 for rounding to the nearest multiple of 0.1
 0 for rounding to the nearest whole number
 -1 for rounding to the nearest multiple of 10
 -2 for rounding to the nearest multiple of 100

Notes.

• If the scale argument is present, the result usually has the same scale as the first argument, e.g.
• ROUND(123.654, 1) returns 123.700 (not 123.7)
• ROUND(8341.7, -3) returns 8000.0 (not 8000)
• ROUND(45.1212, 0) returns 45.0000 (not 45)

Otherwise, the result scale is 0:
• ROUND(45.1212) returns 45

Important

• If the external function ROUND is declared in your database, it will override the internal
function. To make the internal function available, DROP or ALTER the external
function (UDF).

• If you are used to the behaviour of the external function ROUND, please notice that the
internal function always rounds halves away from zero, i.e. downward for negative
numbers.

RPAD()
Available in. DSQL, PSQL

Added in. 2.1

Built-in functions and variables

112

Changed in. 2.5 (backported to 2.1.4)

Description. Right-pads a string with spaces or with a user-supplied string until a given length
is reached.

Result type. VARCHAR or BLOB

Syntax.

RPAD (str, endlen [, padstr])

• This function fully supports text BLOBs of any length and character set.

• If str is a BLOB, the result is a BLOB. Otherwise, the result is a
VARCHAR(endlen).

• If padstr is given and equals '' (empty string), no padding takes place.

• If endlen is less than the current string length, the string is truncated to endlen,
even if padstr is the empty string.

Important

If the external function RPAD is declared in your database, it will override the internal
function. To make the internal function available, DROP or ALTER the external function
(UDF).

Note

In Firebird 2.1–2.1.3, all non-BLOB results were of type VARCHAR(32765), which
made it advisable to cast them to a more modest size. This is no longer the case.

Examples.

rpad ('Hello', 12) -- returns 'Hello '
 rpad ('Hello', 12, '-') -- returns 'Hello-------'
 rpad ('Hello', 12, '') -- returns 'Hello'
 rpad ('Hello', 12, 'abc') -- returns 'Helloabcabca'
 rpad ('Hello', 12, 'abcdefghij') -- returns 'Helloabcdefg'
 rpad ('Hello', 2) -- returns 'He'
 rpad ('Hello', 2, '-') -- returns 'He'
 rpad ('Hello', 2, '') -- returns 'He'

Warning

When used on a BLOB, this function may need to load the entire object into memory.
Although it does try to limit memory consumption, this may affect performance if huge
BLOBs are involved.

See also. LPAD()

SIGN()
Available in. DSQL, PSQL

Added in. 2.1

Description. Returns the sign of the argument: -1, 0 or 1.

Result type. SMALLINT

Built-in functions and variables

113

Syntax.

SIGN (number)

Important

If the external function SIGN is declared in your database, it will override the internal
function. To make the internal function available, DROP or ALTER the external function
(UDF).

SIN()
Available in. DSQL, PSQL

Added in. 2.1

Description. Returns an angle's sine. The argument must be given in radians.

Result type. DOUBLE PRECISION

Syntax.

SIN (angle)

• Any non-NULL result is – obviously – in the range [-1, 1].

Important

If the external function SIN is declared in your database, it will override the internal
function. To make the internal function available, DROP or ALTER the external function
(UDF).

SINH()
Available in. DSQL, PSQL

Added in. 2.1

Description. Returns the hyperbolic sine of the argument.

Result type. DOUBLE PRECISION

Syntax.

SINH (number)

Important

If the external function SINH is declared in your database, it will override the internal
function. To make the internal function available, DROP or ALTER the external function
(UDF).

SQRT()
Available in. DSQL, PSQL

Added in. 2.1

Description. Returns the square root of the argument.

Built-in functions and variables

114

Result type. DOUBLE PRECISION

Syntax.

SQRT (number)

Important

If the external function SQRT is declared in your database, it will override the internal
function. To make the internal function available, DROP or ALTER the external function
(UDF).

SUBSTRING()
Available in. DSQL, PSQL

Added in. 1.0

Changed in. 2.0, 2.1, 2.1.5, 2.5.1

Description. Returns a string's substring starting at the given position, either to the end of the string
or with a given length.

Result type. VARCHAR(n) or BLOB

Syntax.

SUBSTRING (str FROM startpos [FOR length])

This function returns the substring starting at character position startpos (the first position being
1). Without the FOR argument, it returns all the remaining characters in the string. With FOR, it returns
length characters or the remainder of the string, whichever is shorter.

In Firebird 1.x, startpos and length must be integer literals. In 2.0 and above they can be any
valid integer expression.

Starting with Firebird 2.1, this function fully supports binary and text BLOBs of any length and
character set. If str is a BLOB, the result is also a BLOB. For any other argument type, the result
is a VARCHAR(n). Previously, the result type used to be CHAR(n) if the argument was a CHAR(n)
or a string literal.

For non-BLOB arguments, the width of the result field is always equal to the length of str, regardless
of startpos and length. So, substring('pinhead' from 4 for 2) will return a
VARCHAR(7) containing the string 'he'.

If any argument is NULL, the result is NULL.

Bugs

• If str is a BLOB and the length argument is not present, the output is limited to
32767 characters. Workaround: with long BLOBs, always specify char_length(str)
– or a sufficiently high integer – as the third argument, unless you are sure that the
requested substring fits within 32767 characters.

This bug has been fixed in version 2.5.1; the fix was also backported to 2.1.5.

• A bug in Firebird 2.0 which caused the function to return “false emptystrings” if
startpos or length was NULL, has been fixed.

Example.

Built-in functions and variables

115

insert into AbbrNames(AbbrName)
 select substring(LongName from 1 for 3) from LongNames

Warning

When used on a BLOB, this function may need to load the entire object into memory.
Although it does try to limit memory consumption, this may affect performance if huge
BLOBs are involved.

TAN()
Available in. DSQL, PSQL

Added in. 2.1

Description. Returns an angle's tangent. The argument must be given in radians.

Result type. DOUBLE PRECISION

Syntax.

TAN (angle)

Important

If the external function TAN is declared in your database, it will override the internal
function. To make the internal function available, DROP or ALTER the external function
(UDF).

TANH()
Available in. DSQL, PSQL

Added in. 2.1

Description. Returns the hyperbolic tangent of the argument.

Result type. DOUBLE PRECISION

Syntax.

TANH (number)

• Due to rounding, any non-NULL result is in the range [-1, 1] (mathematically,
it's <-1, 1>).

Important

If the external function TANH is declared in your database, it will override the internal
function. To make the internal function available, DROP or ALTER the external function
(UDF).

TRIM()
Available in. DSQL, PSQL

Added in. 2.0

Changed in. 2.1

Built-in functions and variables

116

Description. Removes leading and/or trailing spaces (or optionally other strings) from the input
string. Since Firebird 2.1 this function fully supports text BLOBs of any length and character set.

Result type. VARCHAR(n) or BLOB

Syntax.

TRIM ([<adjust>] str)

 <adjust> ::= {[where] [what]} FROM

 where ::= BOTH | LEADING | TRAILING /* default is BOTH */

 what ::= The substring to be removed (repeatedly if necessary)
 from str's head and/or tail. Default is ' ' (space).

Examples.

select trim (' Waste no space ') from rdb$database
 -- returns 'Waste no space'

select trim (leading from ' Waste no space ') from rdb$database
 -- returns 'Waste no space '

select trim (leading '.' from ' Waste no space ') from rdb$database
 -- returns ' Waste no space '

select trim (trailing '!' from 'Help!!!!') from rdb$database
 -- returns 'Help'

select trim ('la' from 'lalala I love you Ella') from rdb$database
 -- returns ' I love you El'

select trim ('la' from 'Lalala I love you Ella') from rdb$database
 -- returns 'Lalala I love you El'

Notes.

• If str is a BLOB, the result is a BLOB. Otherwise, it is a VARCHAR(n) with n the formal length
of str.

• The substring to be removed, if specified, may not be bigger than 32767 bytes. However, if this
substring is repeated at str's head or tail, the total number of bytes removed may be far greater.
(The restriction on the size of the substring will be lifted in Firebird 3.)

Warning

When used on a BLOB, this function may need to load the entire object into memory.
This may affect performance if huge BLOBs are involved.

TRUNC()
Available in. DSQL, PSQL

Added in. 2.1

Description. Returns the integer part of a number. With the optional scale argument, the number
can be truncated to powers-of-ten multiples (tens, hundreds, tenths, hundredths, etc.) instead of just
integers.

Result type. INTEGER, (scaled) BIGINT or DOUBLE

Built-in functions and variables

117

Syntax.

TRUNC (<number> [, <scale>])

 <number> ::= a numerical expression
 <scale> ::= an integer specifying the number of decimal places
 toward which should be truncated, e.g.:
 2 for truncating to a multiple of 0.01
 1 for truncating to a multiple of 0.1
 0 for truncating to a whole number
 -1 for truncating to a multiple of 10
 -2 for truncating to a multiple of 100

Notes.

• If the scale argument is present, the result usually has the same scale as the first argument, e.g.
• TRUNC(789.2225, 2) returns 789.2200 (not 789.22)
• TRUNC(345.4, -2) returns 300.0 (not 300)
• TRUNC(-163.41, 0) returns -163.00 (not -163)

Otherwise, the result scale is 0:
• TRUNC(-163.41) returns -163

Important

If you are used to the behaviour of the external function TRUNCATE, please notice that
the internal function TRUNC always truncates toward zero, i.e. upward for negative
numbers.

UPPER()
Available in. DSQL, ESQL, PSQL

Added in. IB

Changed in. 2.0, 2.1

Description. Returns the upper-case equivalent of the input string. The exact result depends on
the character set. With ASCII or NONE for instance, only ASCII characters are uppercased; with
OCTETS, the entire string is returned unchanged. Since Firebird 2.1 this function also fully supports
text BLOBs of any length and character set.

Result type. (VAR)CHAR or BLOB

Syntax.

UPPER (str)

Examples.

select upper(_iso8859_1 'Débâcle')
 from rdb$database
 -- returns 'DÉBÂCLE' (before Firebird 2.0: 'DéBâCLE')

select upper(_iso8859_1 'Débâcle' collate fr_fr)
 from rdb$database
 -- returns 'DEBACLE', following French uppercasing rules

See also. LOWER

Built-in functions and variables

118

UUID_TO_CHAR()
Available in. DSQL, PSQL

Added in. 2.5

Description. Converts a 16-byte UUID to its 36-character, human-readable ASCII representation.

Result type. CHAR(36)

Syntax.

UUID_TO_CHAR (uuid)

 uuid ::= a string consisting of 16 single-byte characters

Examples.

select uuid_to_char(x'876C45F4569B320DBCB4735AC3509E5F') from rdb$database
 -- returns '876C45F4-569B-320D-BCB4-735AC3509E5F'

 select uuid_to_char(gen_uuid()) from rdb$database
 -- returns e.g. '680D946B-45FF-DB4E-B103-BB5711529B86'

 select uuid_to_char('Firebird swings!') from rdb$database
 -- returns '46697265-6269-7264-2073-77696E677321'

See also. CHAR_TO_UUID(), GEN_UUID()

Aggregate functions
Aggregate functions operate on groups of records, rather than on individual records or variables. They
are often used in combination with a GROUP BY clause.

AVG()
Available in. DSQL, ESQL, PSQL

Added in. IB

Changed in.

Description. AVG returns the average argument value in the group.

Result type. Integer

Syntax.

AVG (expression)

• If the group is empty or contains only NULLs, the result is NULL.

COUNT()
Available in. DSQL, ESQL, PSQL

Added in. IB

Changed in.

Built-in functions and variables

119

Description. COUNT returns the number of non-null values in the group.

Result type. Integer

Syntax.

COUNT (expression)

• If the group is empty or contains only NULLs, the result is 0.

LIST()
Available in. DSQL, PSQL

Added in. 2.1

Changed in. 2.5

Description. LIST returns a string consisting of the non-NULL argument values in the group,
separated either by a comma or by a user-supplied delimiter. If there are no non-NULL values (this
includes the case where the group is empty), NULL is returned.

Result type. BLOB

Syntax.

LIST ([ALL | DISTINCT] expression [, separator])

• ALL (the default) results in all non-NULL values to be listed. With DISTINCT,
duplicates are removed, except if expression is a BLOB.

• In Firebird 2.5 and up, the optional separator argument may be any string
expression. This makes it possible to specify e.g. ascii_char(13) as a
separator. (This improvement has also been backported to 2.1.4.)

• The expression and separator arguments support BLOBs of any size and
character set.

• Date/time and numerical arguments are implicitly converted to strings before
concatenation.

• The result is a text BLOB, except when expression is a BLOB of another
subtype.

• The ordering of the list values is undefined.

MAX()
Available in. DSQL, ESQL, PSQL

Added in. IB

Changed in. 2.1

Description. MAX returns the maximum argument value in the group. If the argument is a string,
this is the value that comes last when the active collation is applied.

Result type. Varies

Syntax.

Built-in functions and variables

120

MAX (expression)

• If the group is empty or contains only NULLs, the result is NULL.

• Since Firebird 2.1, this function fully supports text BLOBs of any size and
character set.

MIN()
Available in. DSQL, ESQL, PSQL

Added in. IB

Changed in. 2.1

Description. MIN returns the minimum argument value in the group. If the argument is a string,
this is the value that comes first when the active collation is applied.

Result type. Varies

Syntax.

MIN (expression)

• If the group is empty or contains only NULLs, the result is NULL.

• Since Firebird 2.1, this function fully supports text BLOBs of any size and
character set.

SUM()
Available in. DSQL, ESQL, PSQL

Added in. IB

Changed in.

Description. SUM calculates and returns the sum of non-null values in the group.

Result type. Integer

Syntax.

SUM (expression)

• If the group is empty or contains only NULLs, the result is NULL.

121

Appendix A. Reserved words and
keywords

Reserved words are part of the Firebird SQL language. They cannot be used as identifiers (e.g. as table
or procedure names), except when enclosed in double quotes in Dialect 3. However, you should avoid
this unless you have a compelling reason.

Keywords are also part of the language. They have a special meaning when used in the proper context,
but they are not reserved for Firebird's own and exclusive use. You can use them as identifiers without
double-quoting.

Reserved words
Full list of reserved words in Firebird 2.5:

ADD
ADMIN
ALL
ALTER
AND
ANY
AS
AT
AVG
BEGIN
BETWEEN
BIGINT
BIT_LENGTH
BLOB
BOTH
BY
CASE
CAST
CHAR
CHAR_LENGTH
CHARACTER
CHARACTER_LENGTH
CHECK
CLOSE
COLLATE
COLUMN
COMMIT
CONNECT
CONSTRAINT
COUNT
CREATE
CROSS
CURRENT
CURRENT_CONNECTION
CURRENT_DATE
CURRENT_ROLE
CURRENT_TIME
CURRENT_TIMESTAMP
CURRENT_TRANSACTION
CURRENT_USER

Reserved words and keywords

122

CURSOR
DATE
DAY
DEC
DECIMAL
DECLARE
DEFAULT
DELETE
DISCONNECT
DISTINCT
DOUBLE
DROP
ELSE
END
ESCAPE
EXECUTE
EXISTS
EXTERNAL
EXTRACT
FETCH
FILTER
FLOAT
FOR
FOREIGN
FROM
FULL
FUNCTION
GDSCODE
GLOBAL
GRANT
GROUP
HAVING
HOUR
IN
INDEX
INNER
INSENSITIVE
INSERT
INT
INTEGER
INTO
IS
JOIN
LEADING
LEFT
LIKE
LONG
LOWER
MAX
MAXIMUM_SEGMENT
MERGE
MIN
MINUTE
MONTH
NATIONAL
NATURAL
NCHAR
NO

Reserved words and keywords

123

NOT
NULL
NUMERIC
OCTET_LENGTH
OF
ON
ONLY
OPEN
OR
ORDER
OUTER
PARAMETER
PLAN
POSITION
POST_EVENT
PRECISION
PRIMARY
PROCEDURE
RDB$DB_KEY
REAL
RECORD_VERSION
RECREATE
RECURSIVE
REFERENCES
RELEASE
RETURNING_VALUES
RETURNS
REVOKE
RIGHT
ROLLBACK
ROW_COUNT
ROWS
SAVEPOINT
SECOND
SELECT
SENSITIVE
SET
SIMILAR
SMALLINT
SOME
SQLCODE
SQLSTATE (2.5.1)
START
SUM
TABLE
THEN
TIME
TIMESTAMP
TO
TRAILING
TRIGGER
TRIM
UNION
UNIQUE
UPDATE
UPPER
USER
USING

Reserved words and keywords

124

VALUE
VALUES
VARCHAR
VARIABLE
VARYING
VIEW
WHEN
WHERE
WHILE
WITH
YEAR

Keywords
The following terms have a special meaning in Firebird 2.5 DSQL. Some of them are also reserved
words, others aren't.

!<
^<
^=
^>
,
:=
!=
!>
(
)
<
<=
<>
=
>
>=
||
~<
~=
~>
ABS
ACCENT
ACOS
ACTION
ACTIVE
ADD
ADMIN
AFTER
ALL
ALTER
ALWAYS
AND
ANY
AS
ASC
ASCENDING
ASCII_CHAR
ASCII_VAL
ASIN
AT
ATAN

Reserved words and keywords

125

ATAN2
AUTO
AUTONOMOUS
AVG
BACKUP
BEFORE
BEGIN
BETWEEN
BIGINT
BIN_AND
BIN_NOT
BIN_OR
BIN_SHL
BIN_SHR
BIN_XOR
BIT_LENGTH
BLOB
BLOCK
BOTH
BREAK
BY
CALLER
CASCADE
CASE
CAST
CEIL
CEILING
CHAR
CHAR_LENGTH
CHAR_TO_UUID
CHARACTER
CHARACTER_LENGTH
CHECK
CLOSE
COALESCE
COLLATE
COLLATION
COLUMN
COMMENT
COMMIT
COMMITTED
COMMON
COMPUTED
CONDITIONAL
CONNECT
CONSTRAINT
CONTAINING
COS
COSH
COT
COUNT
CREATE
CROSS
CSTRING
CURRENT
CURRENT_CONNECTION
CURRENT_DATE
CURRENT_ROLE

Reserved words and keywords

126

CURRENT_TIME
CURRENT_TIMESTAMP
CURRENT_TRANSACTION
CURRENT_USER
CURSOR
DATA
DATABASE
DATE
DATEADD
DATEDIFF
DAY
DEC
DECIMAL
DECLARE
DECODE
DEFAULT
DELETE
DELETING
DESC
DESCENDING
DESCRIPTOR
DIFFERENCE
DISCONNECT
DISTINCT
DO
DOMAIN
DOUBLE
DROP
ELSE
END
ENTRY_POINT
ESCAPE
EXCEPTION
EXECUTE
EXISTS
EXIT
EXP
EXTERNAL
EXTRACT
FETCH
FILE
FILTER
FIRST
FIRSTNAME
FLOAT
FLOOR
FOR
FOREIGN
FREE_IT
FROM
FULL
FUNCTION
GDSCODE
GEN_ID
GEN_UUID
GENERATED
GENERATOR
GLOBAL

Reserved words and keywords

127

GRANT
GRANTED
GROUP
HASH
HAVING
HOUR
IF
IGNORE
IIF
IN
INACTIVE
INDEX
INNER
INPUT_TYPE
INSENSITIVE
INSERT
INSERTING
INT
INTEGER
INTO
IS
ISOLATION
JOIN
KEY
LAST
LASTNAME
LEADING
LEAVE
LEFT
LENGTH
LEVEL
LIKE
LIMBO
LIST
LN
LOCK
LOG
LOG10
LONG
LOWER
LPAD
MANUAL
MAPPING
MATCHED
MATCHING
MAX
MAXIMUM_SEGMENT
MAXVALUE
MERGE
MIDDLENAME
MILLISECOND
MIN
MINUTE
MINVALUE
MOD
MODULE_NAME
MONTH
NAMES

Reserved words and keywords

128

NATIONAL
NATURAL
NCHAR
NEXT
NO
NOT
NULL
NULLIF
NULLS
NUMERIC
OCTET_LENGTH
OF
ON
ONLY
OPEN
OPTION
OR
ORDER
OS_NAME
OUTER
OUTPUT_TYPE
OVERFLOW
OVERLAY
PAD
PAGE
PAGE_SIZE
PAGES
PARAMETER
PASSWORD
PI
PLACING
PLAN
POSITION
POST_EVENT
POWER
PRECISION
PRESERVE
PRIMARY
PRIVILEGES
PROCEDURE
PROTECTED
RAND
RDB$DB_KEY
READ
REAL
RECORD_VERSION
RECREATE
RECURSIVE
REFERENCES
RELEASE
REPLACE
REQUESTS
RESERV
RESERVING
RESTART
RESTRICT
RETAIN
RETURNING

Reserved words and keywords

129

RETURNING_VALUES
RETURNS
REVERSE
REVOKE
RIGHT
ROLE
ROLLBACK
ROUND
ROW_COUNT
ROWS
RPAD
SAVEPOINT
SCALAR_ARRAY
SCHEMA
SECOND
SEGMENT
SELECT
SENSITIVE
SEQUENCE
SET
SHADOW
SHARED
SIGN
SIMILAR
SIN
SINGULAR
SINH
SIZE
SKIP
SMALLINT
SNAPSHOT
SOME
SORT
SOURCE
SPACE
SQLCODE
SQLSTATE (2.5.1)
SQRT
STABILITY
START
STARTING
STARTS
STATEMENT
STATISTICS
SUB_TYPE
SUBSTRING
SUM
SUSPEND
TABLE
TAN
TANH
TEMPORARY
THEN
TIME
TIMEOUT
TIMESTAMP
TO
TRAILING

Reserved words and keywords

130

TRANSACTION
TRIGGER
TRIM
TRUNC
TWO_PHASE
TYPE
UNCOMMITTED
UNDO
UNION
UNIQUE
UPDATE
UPDATING
UPPER
USER
USING
UUID_TO_CHAR
VALUE
VALUES
VARCHAR
VARIABLE
VARYING
VIEW
WAIT
WEEK
WEEKDAY
WHEN
WHERE
WHILE
WITH
WORK
WRITE
YEAR
YEARDAY

131

Appendix B. Character sets and
collations

To be written.

132

Appendix C. Error codes
To be written.

133

Appendix D. Document History
The exact file history is recorded in the manual module in our CVS tree; see http://sourceforge.net/
cvs/?group_id=9028

Revision History
Revision 1.0 ?? Mon 2012 XX
First publication.

http://sourceforge.net/cvs/?group_id=9028
http://sourceforge.net/cvs/?group_id=9028

134

Appendix E. License notice
The contents of this Documentation are subject to the Public Documentation License Version 1.0
(the “License”); you may only use this Documentation if you comply with the terms of this License.
Copies of the License are available at http://www.firebirdsql.org/pdfmanual/pdl.pdf (PDF) and http://
www.firebirdsql.org/manual/pdl.html (HTML).

The Original Documentation is titled Firebird 2.5 Language Reference.

The Initial Writers of the Original Documentation are: Paul Vinkenoog, Dmitry Yemanow and Thomas
Woinke.

Copyright (C) 2008-2012. All Rights Reserved. Initial Writers contact: paul at vinkenoog dot nl.

Writers and Editors of included PDL-licensed material are: J. Beesley, Helen Borrie, Arno Brinkman,
Frank Ingermann, Vlad Khorsun, Alex Peshkov, Nickolay Samofatov, Adriano dos Santos Fernandes,
Dmitry Yemanov.

Included portions are Copyright (C) 2001-2010 by their respective authors. All Rights Reserved.

http://www.firebirdsql.org/pdfmanual/pdl.pdf
http://www.firebirdsql.org/manual/pdl.html
http://www.firebirdsql.org/manual/pdl.html

	Firebird 2.5 Language Reference
	Table of Contents
	Chapter 1. Introduction
	Subject matter
	Authorship

	Chapter 2. Background
	SQL flavors
	SQL dialects
	Error conditions

	Chapter 3. Language structure
	Basics: statements, tokens, keywords
	Identifiers
	Literals
	Operators and specials
	Comments

	Chapter 4. Data types
	Numeric types
	SMALLINT
	INTEGER
	BIGINT data type
	FLOAT data type
	REAL data type
	DOUBLE PRECISION data type
	LONG FLOAT data type
	NUMERIC data type
	DECIMAL data type

	Character types
	CHARACTER data type
	NATIONAL CHARACTER data type
	CHARACTER VARYING data type
	NATIONAL CHARACTER VARYING data type

	Date/time types
	DATE data type
	TIME data type
	TIMESTAMP data type

	Binary types
	BLOB data type

	Arrays
	Comparison rules
	Coercion rules
	Collation rules

	Chapter 5. Common language elements
	Value expressions
	Select expressions
	Predicates

	Chapter 6. DML statements
	DELETE
	Aliases
	TRANSACTION
	WHERE
	PLAN
	ORDER BY
	ROWS
	RETURNING

	EXECUTE BLOCK
	Input and output parameters
	Statement terminators

	EXECUTE PROCEDURE
	INSERT
	INSERT ... VALUES
	INSERT ... SELECT
	INSERT ... DEFAULT VALUES
	The RETURNING clause
	Inserting into BLOB columns

	INSERT CURSOR
	MERGE
	SELECT
	The TRANSACTION directive
	FIRST, SKIP and ROWS
	The column list
	Selecting INTO variables
	The FROM clause
	Selecting from a table or view
	Selecting from a stored procedure
	Selecting from a derived table
	Selecting from a CTE

	Joins
	Inner vs. outer joins
	Qualified joins
	Explicit-condition joins
	Named columns joins

	Natural joins
	A note on equality
	Cross joins
	Ambiguous field names in joins

	The WHERE clause
	The GROUP BY clause
	HAVING

	The PLAN clause
	Simple plans
	Composite plans

	UNION
	MATERIAL COPIED FROM THE LRU
	FROM LRU: Aggregate functions: Extended functionality
	Mixing aggregate functions from different contexts
	Aggregate functions and GROUP BY items inside subqueries
	Subqueries inside aggregate functions
	Nesting aggregate function calls
	Aggregate statements: Stricter HAVING and ORDER BY

	FROM LRU: [AS] before relation alias
	FROM LRU: COLLATE subclause for text BLOB columns
	FROM LRU: Common Table Expressions (“WITH ... AS ... SELECT”)
	Recursive CTEs

	FROM LRU: Derived tables (“SELECT FROM SELECT”)
	FROM LRU: FIRST and SKIP
	FROM LRU: GROUP BY
	Grouping by alias, position and expressions

	FROM LRU: HAVING: Stricter rules
	FROM LRU: JOIN
	Ambiguous field names rejected
	CROSS JOIN
	Named columns JOIN
	Natural JOIN

	FROM LRU: ORDER BY
	Order by column alias
	Ordering by column position causes * expansion
	Ordering by expressions
	NULLs placement
	Stricter ordering rules with aggregate statements

	FROM LRU: PLAN
	Handling of user PLANs improved
	ORDER with INDEX
	PLAN must include all tables

	FROM LRU: Relation alias makes real name unavailable
	FROM LRU: ROWS
	FROM LRU: UNION
	UNIONs in subqueries
	UNION DISTINCT

	FROM LRU: WITH LOCK

	UPDATE
	Using an alias
	The SET clause
	The WHERE clause
	ORDER BY and ROWS
	RETURNING
	Updating BLOB columns

	UPDATE OR INSERT
	The RETURNING clause

	Chapter 7. Built-in functions and variables
	Context variables
	CURRENT_CONNECTION
	CURRENT_DATE
	CURRENT_ROLE
	CURRENT_TIME
	CURRENT_TIMESTAMP
	CURRENT_TRANSACTION
	CURRENT_USER
	DELETING
	GDSCODE
	INSERTING
	NEW
	'NOW'
	OLD
	ROW_COUNT
	SQLCODE
	SQLSTATE
	'TODAY'
	'TOMORROW'
	UPDATING
	'YESTERDAY'
	USER

	Scalar functions
	ABS()
	ACOS()
	ASCII_CHAR()
	ASCII_VAL()
	ASIN()
	ATAN()
	ATAN2()
	BIN_AND()
	BIN_OR()
	BIN_SHL()
	BIN_SHR()
	BIN_XOR()
	BIT_LENGTH()
	CAST()
	CEIL(), CEILING()
	CHAR_LENGTH(), CHARACTER_LENGTH()
	CHAR_TO_UUID()
	COALESCE()
	COS()
	COSH()
	COT()
	DATEADD()
	DATEDIFF()
	DECODE()
	EXP()
	EXTRACT()
	MILLISECOND
	WEEK

	FLOOR()
	GEN_ID()
	GEN_UUID()
	HASH()
	IIF()
	LEFT()
	LN()
	LOG()
	LOG10()
	LOWER()
	LPAD()
	MAXVALUE()
	MINVALUE()
	MOD()
	NULLIF()
	OCTET_LENGTH()
	OVERLAY()
	PI()
	POSITION()
	POWER()
	RAND()
	RDB$GET_CONTEXT()
	RDB$SET_CONTEXT()
	REPLACE()
	REVERSE()
	RIGHT()
	ROUND()
	RPAD()
	SIGN()
	SIN()
	SINH()
	SQRT()
	SUBSTRING()
	TAN()
	TANH()
	TRIM()
	TRUNC()
	UPPER()
	UUID_TO_CHAR()

	Aggregate functions
	AVG()
	COUNT()
	LIST()
	MAX()
	MIN()
	SUM()

	Appendix A. Reserved words and keywords
	Reserved words
	Keywords

	Appendix B. Character sets and collations
	Appendix C. Error codes
	Appendix D. Document History
	Appendix E. License notice

