
Speeding up line/line CCD checks with thickness

Last updated: April 22, 2011

1 Introduction: line/line CCD without thickness

Let us consider four points, P1, P2, Q1 and Q2, that are moving through space as a function of time. A necessary
condition for the segments P1P2 and Q1Q2 to intersect (at some time t) is that P1, P2, Q1 and Q2 must be
coplanar; or equivalently, that the volume of the tetrahedron P1P2Q1Q2 equals zero.1 This can be expressed
using the triple product of adjacent edges:

0 = 6VP1P2Q1Q2 =
−−−→
P1P2 · (

−−−→
P1Q1 ×

−−−→
P1Q2) = (P⃗2 − P⃗1) ·

(
(Q⃗1 − P⃗1)× (Q⃗2 − P⃗1)

)
After some rearranging and a change of sign,2 we obtain the more symmetric-looking

(Q⃗1 − P⃗1) ·
(
(P⃗2 − P⃗1)× (Q⃗2 − Q⃗1)

)
= 0 (1.1)

(It's worth remembering that all of these vectors are implicitly functions of time.)

If we assume that the segment endpoints are moving linearly in time, we can express the triple product above
as a cubic polynomial T (t). Because of linearity, P⃗1(t) = P⃗10 + P⃗1∆t, where P⃗10 = P⃗1(0) and P⃗1∆ = P⃗1(1) −
P⃗1(0). Likewise, P⃗2(t) = P⃗20 + P⃗2∆t, etc. Eventually, after working through the vector math (or letting e.g.
LinearMotion classes do it for you), you end up with a (scalar) 3rd-degree polynomial expression for the triple
product.

That means that in most cases,3 we can �nd the roots of T (t) analytically and obtain the time(s) of possible
impact. (This is what the current �cubic solver� CCD implementation does.)

We can also (subject to the same caveats) obtain the image of any time interval [t1, t2] under T , i.e. determine
the set of values for the triple product as the argument varies between t1 and t2. If the result (which is an
interval4) includes zero,

T
(
[t1, t2]

)
= [Tmin, Tmax] ∋ 0 (1.2)

then there may be collisions (one or more) between t1 and t2, but if not, then there are certainly no collisions
within that time interval. We can use this condition in a recursive search to �nd the time of impact to an
arbitrary precision. (This is what the current �interval arithmetic� CCD implementation does.)

In either case, once we have established the time of would-be impact, we can �nd P⃗1, P⃗2, Q⃗1 and Q⃗2 at that
time, and use �regular� (non-continuous) collision detection to see whether a collision truly occurs and obtain
the details.

1This condition is necessary but obviously not su�cient! The condition really checks whether the in�nite lines de�ned by P1P2

and Q1Q2 are intersecting, but it's of course possible for the lines to be intersecting but for the segments to be positioned so they
don't.

2The volume as expressed here has a sign that depends on the order of vertices, but the sign doesnt matter for our purposes.
3If the two segments remain coplanar throughout their motion, the polynomial will be identically zero and cant be usefully solved

etc. We handle those cases specially.
4Because T is continuous.

1



2 Checking for line/line collisions with thickness

2.1 A generalization from the no-thickness case

Equations (1.1) and (1.2) obviously no longer hold if you want to assume that the segments P1P2 and Q1Q2

are actually cylinders with half-thickness rP > 0 and rQ > 0, respectively. The �thickened� lines (i.e. in�nitely
long cylinders) will come into contact before the volume of the tetrahedron reaches zero, at the point where the
perpendicular distance between the lines is d = rP + rQ.

The volume of the tetrahedron at the point of contact can be calculated using the formula for the volume of the
tetrahedron given two non-adjacent edges and their distance:

Vcontact(t) =
d
∥∥∥(P⃗2(t)− P⃗1(t)

)
×
(
Q⃗2(t)− Q⃗1(t)

)∥∥∥
6

(2.1)

This is a standard formula,5 but see sec. B.1 for a derivation.

A necessary condition for the lines P1P2 and Q1Q2 to be interpenetrating6 is
∣∣VP1P2Q1Q2(t)

∣∣ 6 ∣∣Vcontact(t)∣∣. At
the very moment of initial contact,7 we will have

VP1P2Q1Q2(t)± Vcontact(t) = 0

(Q⃗1 − P⃗1) ·
(
(P⃗2 − P⃗1)× (Q⃗2 − Q⃗1)

)
± (rP + rQ)

∥∥∥(P⃗2 − P⃗1)× (Q⃗2 − Q⃗1)
∥∥∥ = 0 (2.2)

(Every vector above is a function of t, but that takes up way too much space. Just imagine I wrote (t) after
each of them.)

2.2 . . . but this isn't directly usable yet.

The term to the left of the ± in eq. (2.2) is just the left-hand side from eq. (1.1), which is well-behaved. But
the presence of the vector norm operator on the right makes things very very nasty.

As far as I know, there's no way to solve eq. (2.2) analytically for t (a naive approach ends up with a 6th-
degree polynomial). So a �cubic solver�-like approach based on this seems doomed. (Julien's �cubic solver with
thickness� code tends to apply the no-thickness code �rst and then look for nearby solutions with thickness, but
I'm not sure how easily that can be made fully robust.)

Doing what we do in the no-thickness �interval arithmetic� solver also won't work. That code base calculates
the image of an interval through a polynomial by locating the zeros of the polynomial's derivative. Once again,
I don't think we can solve the derivative.

But in order to do a search for the intersection time, as we do in the �interval arithmetic� approach, we don't
necessarily need to calculate the exact image of the interval through the left-hand side of eq. (2.2). An exact
image like in the no-thickness case is certainly nice, because it results in an optimal recursive search (we only

5See e.g. http://en.wikipedia.org/wiki/Tetrahedron#Distance_between_the_edges
6The condition actually checks for interpenetration of the in�nitely long cylinders whose centers are de�ned by the segments and

whose radii equal the half-thickness. Just like the tetrahedron check in the no-thickness case, this is is necessary but not su�cient
for segment collision.

7In the common case where the motion isn't (nearly) coplanar throughout. The coplanar case needs to be handled separately.

2

http://en.wikipedia.org/wiki/Tetrahedron#Distance_between_the_edges 


descend the parts of the call graph where the condition is actually true, meaning no work is wasted.) But having
an approximate result that is guaranteed to be a superset of the real image (but not too much larger!)8 could
still work well.

2.3 Making the math do what we need

To check for collisions between times t1 and t2, we'll be constructing an interval that is known to contain all of
the values of VP1P2Q1Q2(t) ± Vcontact(t) for t ∈ [t1, t2]. (This is not strictly an image, since it will end up with
too much in it.) Just like we did with eq. (1.2), we can check whether the result includes zero, and use that as
a basis for a recursive search.

Starting from eq. (2.2), we make the following approximations:

• We treat each of the two terms separately, then add the two resulting intervals together. Note that this is
an approximation in that it may arti�cially broaden the result.

• As in the no-thickness case, we express VP1P2Q1Q2(t) as a cubic polynomial T (t). This allows us to �nd
the image of [t1, t2] under the polynomial and use it. (OK, this isn't actually an approximation.)

• We can calculate an upper bound C for the length of the cross product over the entire interval. Then
±Vcontact(t) is guaranteed to fall within [−(rP + rQ)C, (rP + rQ)C].

All this gives us a collision check

T
(
[t1, t2]

)
+ [−(rP + rQ)C, (rP + rQ)C] ∋ 0

which may include false positives (i.e. the check may be true when it shouldn't be), but which should
de�nitely cover all of the actual collision cases.

• We can construct the upper bound C in several ways. In fact, we can actually calculate several di�erent
upper bounds, and use the smallest one we obtain as our C.

• For example, the cross product is equal to the product of the lengths of the segments times the sine of
their angle. We can compute the maximum length of P1P2 during the time interval (let's call it ⌈lenP ⌉), do
the same with Q1Q2 (⌈lenQ⌉), and place an upper bound of ⌈lenP ⌉ · ⌈lenQ⌉ on the cross product, ignoring
the angle. (This bound will work well if the segments are close to perpendicular, and may be very loose if
they are close to parallel.)

• Alternately, we can express the x, y and z components of
−−−→
P1P2×

−−−→
Q1Q2 as polynomials, then �nd the values

reached by each polynomial for times in [t1, t2]. We can compute the maximum norm of the resulting triplet
of intervals (by squaring each interval, summing the upper bounds and taking the square root), and use it
as the upper bound C. (This bound will work well if the segments are not moving much.)

• We may want to think of some more upper bounds that work well in cases that are e�ective in cases that
haven't yet been covered well. . .

Putting all of this together gives us the collision check

T
(
[t1, t2]

)
+ [−(rP + rQ)C, (rP + rQ)C] ∋ 0 (2.3a)

8See sec. A.1 for some detail on why too large is bad. . .

3



where

C = min(C1, C2) (more could be added) (2.3b)

C1 =
⌈
lenP ([t1, t2])

⌉ ⌈
lenQ([t1, t2])

⌉
(2.3c)

C2 =
⌈∥∥X([t1, t2])

∥∥⌉ =√⌈X([t1, t2])2
⌉

with X(t) =
−−−→
P1P2 ×

−−−→
Q1Q2 (2.3d)

4



A Things we aren't doing

There are a few other general ideas that can be applied to introduce line thickness into the line/line calculations.
I'm going to mention even the ones that turned out to be dead ends, in case they become relevant at some later
point.

A.1 Old code: Evaluating the triple product using interval arithmetic

One possible approach�and in fact the approach that was used in the previous implementation�is to use
interval arithmetic to simply evaluate the triple product in eq. (1.1). To do so, you express the values reached

by each axis component (x,y,z) of
−−−→
P1P2 over [t1, t2] as an interval. You do the same with

−−−→
Q1Q2 and

−−−→
P1Q1.

You broaden each interval to account for thickness. When you simply plug these intervals into the usual triple
product math, out falls an interval result, and you can check if it includes zero.

The problem with this approach is that the interval formulation of the triple product can produce results that
are over-broad, and so include 0 in the interval far more often than necessary. The biggest reason is that the
�phase� information�the relationships between the motions of each point axis�is not being captured in any
way, so the motion in each axis is treated as being completely independent. This broadness causes far too much
recursion during the search and awful performance. Changing line/line collisions to the approach described in
this document resulted in an >1000x speed improvement for certain bad cases!

It's also important to note that we still use triple product calculations based on �raw� interval arith-

metic in more than a few places. We should really attempt to remove every occurence of the Interval_nD
class from the collision code...

A.2 Other ideas that may or may not be useful

A.2.1 Direct evaluation of C

When we attempt to �gure out the upper bound on the cross product length for use in eq. (2.3), we're currently
completely ignoring a frontal attack that should be able to give us a tight bound.

The cross product P⃗ × Q⃗ can be expressed as a 3-vector of quadratic polynomials in t. It follows that the square

of the cross product can be expressed as a single 4th-degree polynomial. It should be possible to �nd images
of intervals through this polynomial directly! (In order to compute the image, we do need to �nd extrema
(minima/maxima) of the polynomial by locating the zeros of its derivative. But since the derivative is cubic,
that should be possible.)

Thus we can �nd the upper bound for the square of the cross product (it's just the upper end of the interval we
get for the image). The upper bound C for the length of the cross product is the square root of that.

Mostly, I didn't do it that way because I was a bit wary (perhaps unwarrantedly) of the robustness of using a
cubic solver in this way. But if we �nd that the �multiple upper bound� approach spends too much work looking
for bounds that aren't good enough, we should possibly revisit this.

5



A.2.2 Polynomials with interval coe�cients

Using intervals to make the segment endpoints �thick�, as described in sec. A.1, can be developed in another
possible way. Instead of evaluating the triple product using intervals over the entire time interval [t1, t2], you
can keep the time-dependence of each point as is, and just add the appropriate thickness interval [−r, r] to each
of the vectors. If you turn the resulting triple product into a polynomial along the lines of eq. (1.2), you end up
with a polynomial whose coe�cients are intervals rather than scalars.

You can do a number of useful things with such polynomials: evaluate, take derivatives, �nd zeros using the
standard formulas,9 etc. You should also be able to �nd minima/maxima of the polynomials and construct
images of interval arguments under the polynomial.

The big problem is mostly that all of the interval stu� makes things a bit exotic and harder to comprehend
intuitively, so I �nd I have to think hard about things that really ought to be pretty simple. That's primarily
why I gave up this line of attack.

B Derivations

B.1 Tetrahedron volume from non-adjacent edge length and distance

Consider a tetrahedron ABCD, and pick a pair of non-adjacent edges, let's say AB and CD. To �nd the
distance between the straight lines through AB and CD, we start by constructing a line that is perpendicular

to both. The direction of this straight line is the same as the direction of the cross product
−−→
AB ×

−−→
CD; the unit

vector in that direction is

n̂ =

−−→
AB ×

−−→
CD∥∥−−→AB ×
−−→
CD

∥∥
The distance between the lines AB and CD is the same as the projection onto n̂ of the distance from any point
on AB to any point on CD, which is

d =
∣∣−−→KL · n̂

∣∣, where K⃗ = A⃗+ λ
−−→
AB and L⃗ = C⃗ + µ

−−→
CD

±d =
−−→
KL · n̂ =

= (C⃗ − A⃗) · n̂+ µ(
−−→
CD · n̂)− λ(

−−→
AB · n̂) =

=
−→
AC ·

−−→
AB ×−−→

CD∥∥−−→AB ×
−−→
CD

∥∥ + µ

(
−−→
CD ·

−−→
AB ×−−→

CD∥∥−−→AB ×
−−→
CD

∥∥
)

− λ

(
−−→
AB ·

−−→
AB ×−−→

CD∥∥−−→AB ×
−−→
CD

∥∥
)

=

=

−→
AC ·

(−−→
AB ×

−−→
CD

)∥∥−−→AB ×
−−→
CD

∥∥
d =

∣∣∣∣∣
−→
AC ·

(−−→
AB ×

−−→
CD

)∥∥−−→AB ×
−−→
CD

∥∥
∣∣∣∣∣ =

∣∣−→AC ·
(−−→
AB ×

−−→
CD

)∣∣∥∥−−→AB ×
−−→
CD

∥∥
9The zeros you obtain in this way will, of course, be intervals, which complicates �nding minima/maxima.

6



Note that the distance between the lines doesn't depend on which K and L we picked, which is what's expected.
The triple product in the numerator is six times the volume of the tetrahedron (see eq. (1.1)), so

VABCD =
1

6

∣∣∣−→AC ·
(−−→
AB ×

−−→
CD

)∣∣∣ = d
∥∥−−→AB ×

−−→
CD

∥∥
6

(B.1)

which is where eq. (2.1) came from.

7


