
LiteX LiteX

LiteX
LiteX package consists of:

• LiteX Automation – automation wrapper around SQLite3 library.
This wrapper is useful if you want to use SQLite3 databases in Visual Basic or any scripting
languages such as JScript,VBScript and (my favorite) AutoIt3.

• LiteX++ - C++ wrapper around SQLite3 library.
This wrapper is useful to build fast SQLite3 database access in your C++ projects.

• LiteX ADO .NET provider - beta code.
ADO .NET provider for SQLite3 databases to use SQLite3 databases in managed code.

All these wrappers comes with full source and are public domain.

Homepage: http://www.assembla.com/wiki/show/litex.
Public (read-only) SVN repository: http://svn2.assembla.com/svn/aIPblab5qr3zkdab7jnrAJ.

Author: Edmunt Pienkowsky.
E-Mail: roed@onet.eu.

LiteX Automation.
LiteX Automation is an automation wrapper over SQLite3 library.

This library is build in two versions: sqlite3.dll and sqlite3u.dll. Each of them exports
all known sqlite3_... functions and few new functions listed below. sqlite3.dll uses
UTF-8 text encoding and sqlite3u.dll uses UTF-16LE text encoding and it uses Unicode
runtime library. Use Unicode version of LiteX Automation on NT-bases OS'es (WinNT, Win2K,
WinXP, Win2003, etc.). Automation objects may be registered using regsvr32 tool:

regsvr32 sqlite3.dll

You may unregister automation objects by typing:

regsvr32 /u sqlite3.dll

Please register this library every time you download new version because interface definition may be changed.

If you have troubles with sqlite3.dll library registration it means that you probably have
another sqlite3.dll library into your system directory. Putting sqlite3.dll into system
directory is a very bad idea so make sure that this library in this location is really necessary. If you
really need this library into system directory please copy LiteX Automation library into system
directory and register it. In most situations this solution works but version compatibility problems
may occurs – be careful. Another solution is to run regsvr32 tool as follows:

regsvr32 .\sqlite3.dll

or specify full path to this library even if you run regsvr32 from directory where
sqlite3.dll resides.

1

http://www.assembla.com/wiki/show/litex
http://www.sqlite.org/
mailto:roed@onet.eu
http://svn2.assembla.com/svn/aIPblab5qr3zkdab7jnrAJ

LiteX LiteX Automation.
Automation objects.

Connection.

oDb = new ActiveXObject("LiteX.LiteConnection")

Connection object calls sqlite3_register_blob_functions and
sqlite3_register_unacc_functions so new functions and collation sequences may be
used without extra work.

Properties.

Property Access mode Description Examples

Version([string=
TRUE]) RO

String that describes SQLite engine version.
• string = TRUE (default)

String is returned. For example 3.4.2
• string = FALSE

Numerical value is returned. For example 34020.

WScript.Echo("SQLite3
version", oDb.Version,
oDb.Version(false));

Path
RO - if database file is
open
RW - if database file isn't
open

Path to database file. oDb.Path = "c:\\temp\\db.db"

Changes
RO - if database file is
open
NA- if database file isn't
open

The number of database rows that were changed (or
inserted or deleted) by the most recent database
operation.

WScript.Echo("Last changes",
oDb.Changes);

LastInsertRowid
RO - if database file is
open
NA- if database file isn't
open

Integer key of the most recent insert in the database. WScript.Echo("Last ID",
oDb.LastInsertRowid);

ProgressPeriod RW

This property determines frequency of generating
Progress event. Default value is 0 - Progress
event will be never raised. If value of this property is
greater than zero then Progress event will be raised
every ProgresPeriod sqlite engine virtual opcode.
See documentation of natiive
sqlite3_progress_handler (second
parameter) function for more information.

oDb.ProgressPeriod=100

Methods.

Method Description Examples

Open([path]) Opens selected database. Parameter path may be
omitted if you set Path property before.

oDb.Open();

If you use Unicode versionn of LiteX Automation remember that
newly created database is UTF-16LE encoded by default. If you need
UTF-8 encoded database Use PRAGMA encoding statement to set
default encoding of newly created database.

oDb.BatchExecute("PRAGMA encoding='UTF-8'");

OpenInMemory()
Opens in-memory database.
Contents of in-memory database is destroyed when
database is closed.

Code:

oDb.OpenInMemory();

is equivalent to

oDb.Open(":memory:");

Execute(sql, ...)

Fast way to execute single query sql. This query
may include parameters. Parameters values you
specyfy as additional method parameters - see
examples.
If query doesn't returns any result empty value is
returned.
If query returns one or more rows first row is
returned as Row property of statement object does.

oDb.Execute("INSERT INTO Test(a,b) VALUES (?,?)",
"foo", 12.45);
oDb.Execute("INSERT INTO Test(a,b) VALUES (?,?)",
null, "peacemaker");
nMax = oDb.Execute("SELECT max(a) FROM Test");

BatchExecute(sql)
Executes many SQL statements at once.
Statements should be non-query but this is not
necessary.

oDb.BatchExecute("CREATE TABLE Test(a); CREATE INDEX
idx ON Test(a); CREATE TestAgain(a); CREATE INDEX
idx_again ON TestAgain(a)")

2

LiteX LiteX Automation.
Method Description Examples

Prepare(sql) Prepares SQL statement and returns prepared
statement object.

oStmt = oDb.Prepare("SELECT a,b FROM Test WHERE a >
10");

Close() Closes database. You must close all statements
associated with this database before.

oDb.Close();

Interrupt() Interrupts execution of pending query. You may
use this method into event handler.

oDb.Interrupt();

Events.

Event Interface Description

Progrss(ByRef abort) IliteProgress (default)

Progress event is generating during execution of long query and if
ProgressPeriod property is set to value greater than zero. Last
parameter of this event is a boolean flag specified by reference. Setting this
flag to FALSE allow you to abort pending operation.
Please note that in many languages you cannot pass value back from event
handler. In such situation you can use Interrupt method of connection
object.

Busy(counter, ByRef
abort) ILiteBusy

Busy event is generated when sqlite engine is trying to access database file
and this file is locked. The counter parameter indicates how many this
event was raised. Last parameter of this event is a boolean flag specified by
reference. Setting this flag to TRUE sqlite engine try access database file
again. By setting this flag to FALSE sqlite engine stops trying to access
database file and generates error.
Please note that in many languages you cannot pass value back from event
handler.

Statement.

Statement object typically is created by Prepare method of connection object but you may create
it manually:

oStmt = new ActiveXObject("LiteX.LiteStatement");

Properties.

Property Access mode Description Examples

ActiveConnection
RW - if not
prepared
RO - if
prepared

Connection object associated with this statement. oStmt.ActiveConnection = oDb;

CommandText
RW - if not
prepared
RO - if
prepared

Statement text - SQL query. oStmt.CommandText = "SELECT a,b FROM
Test ORDER BY a DESC";

ColumnCount
NA - if not
prepared
RO- if
prepared

Number of columns returned by statement.

ColumnName(idx)
NA - if not
prepared
RO- if
prepared

Name of idx column. Columns are numbered
from 0 to ColumnCount-1.

ColumnType(idx)
NA - if not
prepared
RO- if
prepared

Type of idx column; idx may be:
• integer – column index
• string – column name

Return values:
• lxNull = 0 – NULL value
• lxInteger=1 – integer value
• lxLongInteger=2 – integer value
• lxFloat=3 – floating point value
• lxString=4 – string
• lxBinary=5 – binary (BLOB)

3

LiteX LiteX Automation.
Property Access mode Description Examples

ColumnValue(idx,
[type=lxUnknown])

NA - if not
prepared
RO- if
prepared

Value of idx column; idx may be:
• integer – column index
• string – column name

You may force return type by optional type
parameter .
Possible values of type:
• lxUnknown=-1 – guess column type, default
• lxInteger – integer value
• lxLongInteger – integer value
• lxFloat – floating point value
• lxString – text
• lxBinary – binary value (BLOB)
• lxDate – DATE type,

note that date is stored as float number so date
type cannot be guessed, if you need DATE
value you must specify type parameter

Row([mode=lxDefault])
NA - if not
prepared
RO- if
prepared

• mode=lxDefault (default value) - returns
whole row in one dimension array.
• ColumnCount = 0 – empty value is

returned.
• ColumnCount = 1 – no array is returned but

one single scalar value.
• mode=lxArray – always one-dimension

array is returned.
• mode=lxCollection – Row collection is

returned.
This is default property.

row = oStmt.Row;

ParameterCount
NA - if not
prepared
RO- if
prepared

Number of statement's parameters to bind.

ParameterName(idx)
NA - if not
prepared
RO- if
prepared

Name of idx-th parameter. Parameters are
numbered from 1 to ParameterCount. If
parameter is nameless or idx is out of range
empty string is returned.

Done
NA - if not
prepared
RO- if
prepared

Indicates that Step method returns without any
results, this may be end of record set for example.

RowCount
NA - if not
prepared
RO- if
prepared

Returns number of rows returned by statement.

Before use this property you should understand
how this property works. Code:

nCount = oStmt.RowCount

is equivalent to:

nCount = 0;
oStmt.Reset();
while (!oStmt.Step()) nCount++;
oStmt.Reset();

As you see to determine number of rows all rows
must be iterated. This may take long time.
RowCount property is a little bit faster because
it doesn't use expensive Automation calls. Use
this property with caution and inside transaction.

Collections

Collection (Property) Access mode Description Examples

Rows([static=FALSE],
[maxrec=0])

NA - if not
prepared
RO- if
prepared

Returns collection of Row objects. This is a Rows
object.
• static=TRUE – returns static collection. All

records will be iterated and results will be
stored in memory. You can limit number of
records by maxrec parameter (zero by default
– no limit).

• static=FALSE (default) – returns dynamic
collection.

For Each oRow In oStmt.Rows
 ...
Next

4

LiteX LiteX Automation.
Collection (Property) Access mode Description Examples

Columns
NA - if not
prepared
RO- if
prepared

Returns collection of Column objects. This is a
Columns object.

For Each oColumn In oStmt.Columns
 ...
Next

Parameters
NA - if not
prepared
RO- if
prepared

Returns collection of Parameter objects. This is
a Parameters object.

For Each oParameter In oStmt.Parameters
 ...
Next

Methods.

Method Description Examples

Prepare([sql]) Prepares statement, parameter sql may be omitted if you
set CommandText property before.

oStmt.Prepare();

BindParameter(idx,
[value], [type=lxUnknown]
)

Binds value to parameter; idx may be:
• integer - parameter index, parameters are numbered

from one to ParameterCount
• string - parameter name, only if named parameters are

used in SQL command

Possible values of type:
• lxUnknown=-1 – guess value type, default
• lxNull – bind NULL value, value is ignored
• lxInteger – bind integer value
• lxLongInteger – bind integer value
• lxFloat – bind floating point value
• lxString – bind text
• lxBinary – bind binary value (BLOB)
• lxDate – date type (DATE)

oStmt.BindParameter(1, null);
oStmt.BindParameter(1, "123", 1
/*lxInteger*/);

BindParameters(...)
One-call parameters binding.
Instead of calling BindParameter method many times
you may call BindParameters at once.

oStmt.BindParameters(1, null, "Hello",
1.2222)

Step([steps=1])
Makes steps steps of statement execution. Returns Done
property value.
Statement must be prepared before use this method. Default
value of nSteps is one - one step (next row).

while(!oStmt.Step());
oStmt.Step(10);

Execute() Non-query statement execution.
After execution statement is ready to re-execute.

oStmt.Prepare("INSERT INTO Table(a)
VALUES (?)");
for(i=0; i<100; i++)
{
 oStmt.BindParameter(1, i);
 oStmt.Execute();
}

Instead of calling Execute() method you can use
following sequence:

oStmt.Step();
oStmt.Reset();

Reset() Resets statement. Begins execution of statement.
Parameters binding remains but may be changed.

oStmt.Reset();

Close() Closes statement. oStmt.Close();

Rows.

LiteX.LiteRows

You cannot create Rows collection directly. It is returned by Rows property of statement object.
This is collection of Row objects.

Property Description Examples
Count Number of elements. Only if collection is static. nCount = oRows.Count

Item([idx=-
1])

Returns row of specified zero-based index.
If collection is non-static then .idx parameter is ignored and current
row is returned.
This is default property.

for(i=0; i < nCount; i++)
{
 oRow = oRows(i)
}

5

LiteX LiteX Automation.
Row.

LiteX.LiteRow

You cannot create Row collection directly. Rows collection contains elements of this type.
Row itself is collection of values.

Property Description Examples

Item(idx,
[type=lxUnkn
own])

Returns value of idx-th column. Specifying second
parameter you can force return value type.
This is default property.

val = oRow(0)

Count Returns numbers of columns. columns = oRow.Count

Value Returns all values of all columns in one-dimension array.

Columns.

LiteX.LiteColumns

You cannot create Columns collection directly. It is returned by Columns property of statement
object. This is collection of Column objects.

Property Description Examples
Count Number of columns. nCount = oColumns.Count

Item(idx)

Returns column of specified index idx.
This is default property.

idx may be:
• integer – column zero-based index
• string – column name

for(i=0; i < nCount; i++)
{
 oColumn = oColumns(i)
}

Column.

LiteX.LiteColumn

You cannot create this object directly. Columns collection contains elements of this type.

Property Description Examples

Index Returns index of column.

Value Returns name of column.
This is default property.

For Each oColumn In oStmt.Columns
 Wscript.Echo "Column index:", oColumn.Index
 Wscript.Echo "Column name:",oColumn
Next

Parameters.

LiteX.LiteParameters

You cannot create Parameters collection directly. It is returned by Parameters property of
statement object. This is collection of Parameter objects.

6

LiteX LiteX Automation.
Properties.

Property Description Examples

Item(idx)

Returns idx-th parameter object.
This is default property.

idx may be:
• integer – column zero-based index
• string – column name

oParam = oStmt.Parameters(0)

Count Returns number of parameters in collection.

Methods.

Method Description Examples

Bind(...)
Binds values to parameters at once. This method do
the same such BindParameters method of
statement object.

oStmt.Parameters.Bind(1,2,3)
is equivalent to
oStmt.BindParamaters(1,2,3)

Parameter.

LiteX.LiteParameter

You cannot create this object directly. Parameters collection contains elements of this type.

Properties.

Property Description Examples

Index Index of property.

Name Name of property.
This is default property.

Methods.

Method Description Examples

Bind(value, [type=lxUnknown]) Bind specified value to parameter. You may
force type of binded value.

oStmt.Parameters(0).Bind("123")
is equvalent to
oStmt.BindParameter(0,"123")

LargeInteger.

This class is a helper class. It represents 64-bit integer. It may help you to work with 64-bit integers.

oLi = new ActiveXObject("LiteX.LargeInteger");

Property Access mode Description Examples

LowPart RW Low 32 bits of large integer. oLi.LowPart = 0xffffffff

HighPart RW High 32 bits of large integer. oLi.HighPart = 0xffffffff

QuadPart RW Value of large integer as DECIMAL.
This is default property.

oLi.QuadPart = "9999999999999999"

QuadPartCy RW Value of large integer as CY. oLi.QuadPartCy = CCur(999999999999.9999)

MIN_VALUE RO Minimum available value as DECIMAL. WScript.Echo oLi.MIN_VALUE

MAX_VALUE RO Maximum available value as DECIMAL. WScript.Echo oLi.MAX_VALUE

MIN_VALUE_CY RO Minimum available value as CY. WScript.Echo oLi.MIN_VALUE_CY

MIN_VALUE_CY RO Maximum available value as CY. WScript.Echo oLi.MAX_VALUE_CY

7

LiteX LiteX Automation.
Additional functions.

sqlite3_register_blob_functions.

void sqlite3_register_blob_functions(sqlite3*)

This function register two new functions for sqlite3 engine that works on blob fields:
Function Description Example

tovis(blob <,repl>)
Converts blob argument to string. Unprintable
characters are converted to repl character (default
".").

SELECT tovis(b) FROM blober;
SELECT tovis(b, "_") FROM blober;

tohex(blob <,sep>)
Converts blob argument to string with hexadecimal
notation. Optionally bytes may be separated by sep
character (no separator by default).

SELECT tohex(b) FROM blober;
SELECT tohex(b, "|") FROM blober;

sqlite3_register_unacc_functions.

void sqlite3_register_unacc_functions(sqlite3*)

This function register one function for sqlite3 engine that works on text fields:
Function Description Example

unaccent(txt) Removes accents from specified text. SELECT unaccent(b) FROM some_table;

Additionally it registers two collation sequences:
Collation sequence Description Example

unaccented Compares unaccented text. Case sensitive version. CREATE Table(t TEXT COLLATION unaccented);
unaccentedi Compares unaccented text. Case insensitive version. CREATE Table(ti TEXT COLLATION unaccentedi);

This function returns pointer which must be used in
sqlite3_unregister_unacc_functions as second parameter.

sqlite3_unregister_unacc_functions.

void sqlite3_unregister_unacc_functions(sqlite3*, void*)

This function unregisters sqlite3 functions registered previously by
sqlite3_register_unacc_functions. The second parameter is a pointer returned by
sqlite3_register_unacc_functions function.

Handling 64-bit integers.
Handling 64-bit integers in Automation is rather complicated due to some limitations of Automation
itself and some limitation of languages that using Automation objects. To return 64-bit integers
LiteX Automation uses DECIMAL structure. DECIMAL is Automation-compatible but many
languages doesn't support this type properly. Visual Basic and VBScipt knows this type but you
cannot perform any arithmetical operation on this type. In JScript all numbers stored in DECIMAL
are automatically converted to float (Numerical) type. If you need to perform some arithmetical
operations on 64-bit integers you may use CY (currency) type. Internally CY is stored as 64-bit
integer. By using LargeInteger class and its QuadPartCy property you can use CY value as
64-bit integer:

oLi.QuadPart = oDb.LastInsertRowid

8

LiteX LiteX Automation.

WScript.Echo "Current ROWID:", oLi.QuadPart
oLi.QuadPartCy = oLi.QuadPartCy + CCur(0.0001) ' +1
WScript.Echo "Next ROWID:", oLi.QuadPart

Seems complicated? Yes it is but this is not LiteX limitation.

Binding 64-bit integers.

To bind 64-bit integer you must force type to lxInteger (1):

oStmt.Paramaeters(":largeint").Bind("1234567891011", 1) ; binding string
oStmt.Paramaeters(":largeint").Bind(oLi, 1) ; binding large integer object

Reading 64-bit values.

64-bit integers are returned as DECIMAL. But 32-bit integers are returned as Long.

oLi.QuadPart = oStmt.Row("largeint")
Wscript.Echo "Hi:", oLi.HighPart, "Lo:", oLi.LowPart

The example above doesn't work properly in JScript because DECIAML is internally converted to
float (Numerical) type.

You may also force returned value type to string.

sLi = oStmt.ColumnValue("largeint", 4) ;string returned

Access mode abbreviations.
Abbreviation Meaning

RO read only
RW read and write
NA not accessible, any access to this property generates error

Error codes.
Error code (hex) Description SQLite native error code

00000000 Successful result.
Not an error.

SQLITE_OK

C0000001 SQL error or missing database. SQLITE_ERROR
C0000002 An internal logic error in SQLite. SQLITE_INTERNAL
C0000003 Access permission denied. SQLITE_PERM
C0000004 Callback routine requested an abort. SQLITE_ABORT
C0000005 The database file is locked. SQLITE_BUSY
C0000006 A table in the database is locked. SQLITE_LOCKED
C0000007 A malloc() failed – out of memory. SQLITE_NOMEM
C0000008 Attempt to write a readonly database. SQLITE_READONLY
C0000009 Operation terminated by sqlite3_interrupt(). SQLITE_INTERRUPT
C000000A Some kind of disk I/O error occurred. SQLITE_IOERR
C000000B The database disk image is malformed. SQLITE_CORRUPT
C000000C (Internal Only) Table or record not found. SQLITE_NOTFOUND
C000000D Insertion failed because database is full. SQLITE_FULL

9

LiteX LiteX Automation.
Error code (hex) Description SQLite native error code

C000000E Unable to open the database file. SQLITE_CANTOPEN
C000000F Database lock protocol error. SQLITE_PROTOCOL
C0000010 Database is empty. SQLITE_EMPTY
C0000011 The database schema changed. SQLITE_SCHEMA
C0000012 Too much data for one row of a table. SQLITE_TOOBIG
C0000013 Abort due to constraint violation. SQLITE_CONSTRAINT
C0000014 Data type mismatch. SQLITE_MISMATCH
C0000015 Library used incorrectly. SQLITE_MISUSE
C0000016 Uses OS features not supported on host. SQLITE_NOLFS
C0000017 Authorization denied. SQLITE_AUTH
C0000018 Auxiliary database format error. SQLITE_FORMAT
C0000019 2nd parameter to BindParameter out of range. SQLITE_RANGE
C000001A File opened that is not a database file. SQLITE_NOTADB

40000064 Another row ready.
Not an error.

SQLITE_ROW

40000065 Finished query execution.
Not an error.

SQLITE_DONE

C00000C8 Statement already prepared. LiteX specific

C00000C9 Connection property not set. LiteX specific

C00000CA No SQL statement was given. LiteX specific

C00000CB Statement not prepared. LiteX specific

C00000CC Unknown binary data. LiteX specific

C00000CD Cannot guess data type. LiteX specific

C00000CE Cannot get column name. LiteX specific

C00000CF Unknown column type or bad column index. LiteX specific

C00000D0 Cannot create statement object. LiteX specific

C00000D1 Column index out of range. LiteX specific

C00000D2 Unknown column name. LiteX specific

C00000D3 Unknown column index type. Only string or integer values are allowed. LiteX specific

C00000D4 Parameter index out of range. LiteX specific

C00000D5 Unknown parameter name. LiteX specific

C00000D6 Unknown parameter index type. Only string or integer values are allowed. LiteX specific

C00000D7 Database file is open. LiteX specific

C00000D8 Database file isn't open. LiteX specific

C00000D9 Bad step parameter. LiteX specific

C00000DA Non-query statement returns row. LiteX specific

C00000DB Unsupported value type type. LiteX specific

C00000DC Bad binding value. LiteX specific

Building LiteX Automation from source.
LiteX uses ATL library. The minimum required ATL version is 3.0.

To build LiteX binaries I'm using Visual Studio 2005 compiler. For long time Visual Studio 6.0 was
used but for some reason I cannot install this application on my new computer. Project files
(dsp,dsw) from VC++ 6.0 are still included but they may be out of date - modifications are simple
but I cannot make them. If you have VC++ 6.0 compiler and want to help develop LiteX please
contact me. For the same reason I cannot recompile VB example.

10

LiteX LiteX Automation.
It is possible to compile LiteX using Visual Studio C++ 2005 Express Edition. If you use this free
compiler you must install also latest Platform SDK and hack some ATL headers. See here for more
details.

LiteX is by default compiled using my libunacc library. You can ommit this stuff using "... no
Unacc" (e.g. "Release no Unacc") configuration. Please specify "... no Unacc" configuration if
during compilation unacc.h header (from libunacc library) is missing.

If you have problems with LiteX sources you can always contact me. I consider putting LiteX
sources in some public repository. If you can help (where?, how?) please contact me too.

LiteX++
LiteX++ is a simple C++ wrapper around SQLite3 C native API. Sources of this library you can
find in LiteX_pp subdirectory of LiteX package (see also library usage). To use this library you
must have basic knowledge about C++ language and SQLite3 native C API.

Main features of LiteX++ library.
• Most of classes methods are inline.

Because most of class methods are inline compiler can generate really fast code.

• Support for Unicode (UTF-16LE).
LiteX++ uses _T() macro and TCHAR psedo type from tchar.h header.
In Unicode version of this library UTF-16 version of SQLite3 C API routines (eg.
sqlite3_open16, sqlite3_errmsg16) are used whenever possible.
In non-Unicode (ANSI) version of this library every string is encoded to UTF-8 string.
This behavior makes that strings in SQLite3 database are stored as UTF-8 or UTF-16 text
that makes SQLite3 database more portable. For example database created by this library
can be easly accessed by LiteX Automation library and vice versa.

• LiteX++ uses STL standard library.
STL library is mainly used to string handling. LiteX++ typedef-s own string type
_tstring as std::string_base<TCHAR>.
LiteX++ also throws exceptions derived from std::runtime_class.

• Public domain code.
You may use this library whenever you want without any restrictions!

Class reference.
All classes and helper functions are groupped into litex namespace:

using namespace litex;

SQLiteException class.

This class is used by LiteX++ library to throw exceptions indicating error from SQLite3 library.

11

http://www.sqlite.org/
http://www.codeproject.com/wtl/WTLExpress.asp

LiteX LiteX++
Methods.

Method(s) Description Sample code / Comments

int get_ErrorCode() const
Gets error code from SQLite3
library.
Look at sqlite3.h header to see
error codes and their descriptions.

try
{

}
catch(SQLiteException& e)
{
 tcerr << _T("Error code: ") << e.get_ErrorCode()
<< endl;
}

const _tstring& get_Message()
const

Gets error mesage from SQLite3
library.
This is error text returned by
sqlite3_errmsg(16)
function.

try
{

}
catch(SQLiteException& e)
{
 tcerr << _T("Error message: ") << e.get_Message()
<< endl;
}

static void Throw(int
nErrorCode, sqlite3* pDb)
static void Throw(int
nErrorCode)

Throws SQLiteException when
error code is not equal to
SQLITE_OK.
This methods are used internally by
LiteX++ to throw SQLiteException
exceptions when nessesary.

SQLiteConnection db;
...
SQLiteException::Throw(nErrorCode, db);

SQLiteRuntimeException class.

This class is used by LiteX++ library to indicate its own runtime errors. Note that not all errors are
indicated. For example parameters validation. Parameters validation is prformed only in DEBUG
mode by assert macro/function from <cassert> header. This enables to produce fast code
without unnecessary validation in RELEASE mode.

Methods.

Method(s) Description Sample code / Comments

_tstring get_Message() const Gets error message.

try
{
 ...
}
catch(SQLiteRuntimeException& e)
{
 tcerr << _T("LiteX++ exception: ") <<
e.get_Message() << endl;
}

static void Throw(const
_tstring& sMsg)

Throws SQLiteRuntimeException
with specified error message.

SQLiteConnection class.

This is a wrapper class around sqlite3* handle and represents connection to SQLite database.

Constructors.

Constructor Description Sample code / Comments

SQLiteConnection()
Default constructor.
Object initialization will be
performed in future.

SQLiteConnection db;
db.Open(_T("some.db"));
if (db)
{
 db.Close();
}

SQLiteConnection(const
_tstring& sDbPath)

Initializes object and opens sDbPath
database file.
If database file cannot be open
SQLiteException exception is
thrown.

12

LiteX LiteX++
Constructor Description Sample code / Comments

SQLiteConnection(const
TCHAR* pszDbPath)

Initializes object and opens
pszDbPath database file.
If database file cannot be open
SQLiteException exception is
thrown.

SQLiteConnection db(_T("some.db"));

SQLiteConnection(SQLiteConne
ction& db)

Copy constructor. Constructing
object takes ownership of
sqlite3* handle and db object is
detached from this handle.

SQLiteConnection db(_T("some.db"));
if (db) tcout << _T("Database is opened.") << endl;
SQLiteConnection other_db(db);
if (!db) tcout << _T("Database is detached.") <<
endl;
if (other_db) tcout << _T("Databasse is attached.")
<< endl;

Methods.

Method(s) Description Sample code / Comments

bool Open(const _tstring&
sDbPath)

Creates and/or opens sDbPath
database file.
Returns true if database is
created/opened.
In case of failure no exception is
thrown and method return false.

Wrapper around sqlite3_open(16) function.

bool OpenInMemory()
Creates and opens empty in-
memory database.
Contents of in-memory database is
destoryed when database is closed.

If you want to create in-memory database in constructor use MEMORY_DB
string:
SQLiteConnection db(MEMORY_DB);

void Close() Closes previously opened database. Wrapper around sqlite3_close function.

void Interrupt()
This function causes any pending
database operation to abort and
return at its earliest opportunity.

Wrapper around sqlite3_interrupt function.

sqlite_int64
get_LastInsertRowid() const

The following routine returns the
integer key of the most recent insert
in the database.

Wrapper around sqlite3_last_insert_rowid function.

int get_Changes() const
This function returns the number of
database rows that were changed (or
inserted or deleted) by the most
recent executed statement.

Wrapper around sqlite3_changes function.

int get_TotalChanges() const

This function returns the number of
database rows that have been
modified by INSERT, UPDATE or
DELETE statements since the
database handle was opened.

Wrapper around sqlite3_total_changes function.

void BatchExecute(const
TCHAR* pszSql)
void BatchExecute(const
_tstring& sSql)

Executes many SQL statements at
once.

db.BatchExecute(_T("CREATE INDEX d ON Test(d
DESC); CREATE INDEX e ON Test(e)"));

void ExecuteNonQuery(const
TCHAR* szSql)
void ExecuteNonQuery(const
_tstring& sSql)

Executes single SQL statement that
doesn't returns any results.

db.ExecuteNonQuery(_T("CREATE TABLE Test(a INTEGER
PRIMARY KEY, b, c, d, e, f)"));

13

LiteX LiteX++
Method(s) Description Sample code / Comments

int ExecuteScalarInt(const
_tstring& sSql)
sqlite_int64
ExecuteScalarInt64(const
_tstring& sSql)
double ExecuteScalarDouble(
const _tstring& sSql)
_tstring ExecuteScalarText(
const _tstring& sSql)

int ExecuteScalarInt(const
TCHAR* pszSql)
sqlite_int64
ExecuteScalarInt64(const
TCHAR* pszSql)
double ExecuteScalarDouble(
const TCHAR* pszSql)
_tstring ExecuteScalarText(
const TCHAR* pszSql);

Executes singleton SQL statement
(statement that returs one row with
one column) and returns its result.
If statement doesn't returns any row.
SQLiteRuntimeException is thrown.

In fact statements may returs many rows witch many columns but only first
row is fetched and and value from first column is returned.

int nMax = db.ExecuteScalarInt(_T("SELECT max(a)
FROM test"));

SQLiteStatement Prepare(
const _tstring& sSql)
SQLiteStatement Prepare(
const TCHAR* pszSql)

Prepares SQL statement and returns
SQLiteStatement object.

void BeginTransaction()
void CommitTransaction()
void RollbackTransaction()

Transaction begining, commiting
and rollbacking.

db.BeginTransaction()
is shortcut to
db.ExecuteNonQuery(_T("BEGIN TRANSACTION"));
etc.

static _tstring
get_VersionString() SQLite3 library version string. tcout << _T("Hello from SQLite3 version ") <<

SQLiteConnection::get_VersionString() << endl;

static int
get_VersionNumber() SQLitte3 library version number. tcout << _T("Hello from SQLite3 version ") <<

SQLiteConnection::get_VersionNumber() << endl;

Operators.

Operator Description Sample code / Comments

operator sqlite3*() const Access to sqlite3* handle. sqlite3* pDb = db;

operator bool() const Test if database is open.

SQLiteStatement class.

This is a wrapper class around sqlite3_statement* handle and represents prepared SQL
statement.

In most cases you do not create this object explicitly but use SQLiteConnection::Prepare
method to build this object.

Constructors.

Constructor Description Sample code / Comments

SQLiteStatement(SQLiteConnec
tion& connection)

Initializes empty object. SQLiteStatement stmt(db);
...
stmt.Prepare(_T("SELECT * FROM Test"));

SQLiteStatement(SQLiteConnec
tion& connection, const
TCHAR* pszSql)

Initializes object and prepares
pszSql statement.
If statement preparation fails
SQLiteException is thrown.

SQLiteStatement stmt(db, _T("SELECT * FROM Test"));

SQLiteStatement(SQLiteConnec
tion& connection, const
_tstring& sSql)

nitializes object and prepares sSql
statement.
If statement preparation fails
SQLiteException is thrown.

SQLiteStatement(SQLiteStatem
ent& stmt)

Copy constructor.
Stmt object will be detached form
sqlite3_stmt* handle.

SQLiteStatement stmt(db.Prepare(_T("SELECT * FROM
Test")));

14

LiteX LiteX++
Methods.

Method(s) Description Sample code / Comments

SQLiteConnection&
get_Connection() const

Gets SQLiteConnection object
reference associated with this
object.

SQliteConnection& stmt_db = stmt.get_Connection();

void Prepare(const _tstring&
sSql)
void Prepare(const TCHAR*
pszSql)

Prepares SQL statement.
If statement compilation fails
SQLiteException is thrown.

stmt.Prepare(_T("SELECT * FROM Test"));

void Reset()
Resets previously prepared
statement to its initial state, ready to
re-executed.

stmt.Reset()

void Finalize()
Deletes previously prepared
statement.
Releases sqlite3_stmt*
handle.

Destructor also finalizes prepared statement if you do not call this method.

int get_ParameterCount()
const

Number of statement parameters.
Statement must be prepared.

_tstring get_ParameterName(
int nParam) const

Gets name of nParam-th
parameter.
Use only when you use named
parmaters.
Parameters are numbered from
1!

int nParamCount = stmt.get_ParameterCount();
for(int i=1; i<=nParamCount; i++)
{
 tcout << _T("Parameter ") << i << _T(": ") <<
stmt.get_ParameterName(i) << endl;
}

void BindBlob(int nParam,
const void* pBlock, int nSize
)
void BindBlob(const
_tstring& sParam, const void*
pBlock, int nSize)
void BindBlob(const TCHAR*
pszParam, const void* pBlock,
int nSize)

Binds BLOB to statement's
parameter.
You may specify parameter by
index (nParam) or by name
(sParam,pszParam).

static const BYTE blob[4] = { 0x01, 0x02, 0x03,
0x04 };
...
stmt.BindBlob(1, blob, 4)
stmt.BindBlob(_T(":blob_parameter"), blob, 4);

void BindDouble(int nParam,
double val)
void BindDouble(const
_tstring& sParam, double
val)
void BindDouble(const TCHAR*
pszParam, double val)

Binds floating-point value to
statement's parameter.
You may specify parameter by
index (nParam) or by name
(sParam,pszParam).

stmt.BindDouble(2, 1.7888888);
stmt.BindDouble(_T(":double_parameter"),
1.7888888);

void BindInt(int nParam, int
val)
void BindInt(const _tstring&
sParam, int val)
void BindInt(const TCHAR*
pszParam, int val)

Binds integer value to statement's
parameter.
You may specify parameter by
index (nParam) or by name
(sParam,pszParam).

stmt.BindInt(3, 1234);
stmt.BindInt(_T(":int_parameter"), 1234);

void BindInt64(int nParam,
sqlite_int64 val)
void BindInt64(const
_tstring& sParam,
sqlite_int64 val)
void BindInt64(const TCHAR*
pszParam, sqlite_int64 val)

Binds 64-bit integer value to
statement's parameter.
You may specify parameter by
index (nParam) or by name
(sParam,pszParam).

stmt.BindInt64(4, 1234123456);
stmt.BindInt64(_T(":int64_parameter"), 1234123456);

void BindText(int nParam,
const TCHAR* val)
void BindText(int nParam,
const _tstring& val)
void BindText(const
_tstring& sParam, const
TCHAR* val)
void BindText(const
_tstring& sParam, const
_tstring& val)
void BindText(const TCHAR*
pszParam, const TCHAR* val)
void BindText(const TCHAR*
pszParam, const _tstring& val
)

Binds text to statement's parameter.
You may specify parameter by
index (nParam) or by name
(sParam,pszParam).

tostringstream ss;
ss << _T("-=<") << hex << rand() << _T(">=-");
stmt.BindText(5, ss.str());
stmt.BindText(_T(":str_parameter"),
SQLiteConnection::get_VersionString())

15

LiteX LiteX++
Method(s) Description Sample code / Comments

void BindNull(int nParam)
void BindNull(const
_tstring& sParam)
void BindNull(const TCHAR*
pszParam)

Binds NULL value to statement's
parameter.
You may specify parameter by
index (nParam) or by name
(sParam,pszParam).

stmt.BindNull(6);
stmt.BindNull(_T(":nil_parameter"));

int get_ColumnCount() const
Returns the number of columns in
the result set returned by the
prepared statement.

_tstring get_ColumnName(int
nColIdx)

This function returns the column
heading for the nColIdx-th
column of prepared statement.

int nColumnCount = stmt.get_ColumnCount();
for(int i=0; i<nColumnCount; i++)
{
 tcout << _T("Column ") << 1 << _T(": ") <<
stmt.get_ColumnName(i) << endl;
}

_tstring get_ColumnDecltype(
int nColIdx)

Returns declared type of
nColIDx-th column.

tcout << _T("Declared column type: ") <<
stmt.get_ColumnDecltype(0) << endl;

bool Step()

One step execution of prepared
statement. One step return one row.
Returns true if new row is fetched
and flase when end of record set
was reached.

SQLiteStatement stmt(db, _T("SELECT * FROM TEST"));
while(stmt.Step())
{
 // dump data here
}

void Execute()
Non-query statement execution.
After execution statement is ready
to re-execute.

SQLiteStatement stmt(db, _T("INSERT INTO Table(a)
VALUES(?)"));
for(int i=0; i<100; i++)
{
stmt.BindInt(1, i);
stmt.Execute();
}

Instead of calling Execute() method you can use following sequence:

stmt.Step();
stmt.Reset();

int get_DataCount() const
Returns the number of values in the
current row of the result set.
You must call Step method before.

const void* get_ColumnBlob(
int nColIdx, int& nBlobSize)
const

Returns BLOB and its size of
nColIdx-th column in the current
row of the result set.

int nBlobSize;
const void* pBlob = stmt.get_ColumnBlob(0,nBlobSize);
tcout << _T("Blob size: ") << nBlobSize << endl;

double get_ColumnDouble(int
nColIdx) const

Returns floating-point value of
nColIdx-th column in the current
row of the result set.

int get_ColumnInt(int
nColIdx) const

Returns integer value of nColIdx-
th column in the current row of the
result set.

sqlite_int64 get_ColumnInt64(
int nColIdx) const

Returns 64-bit integer value of
nColIdx-th column in the current
row of the result set.

_tstring get_ColumnText(int
nColIdx) const

Returns text value of nColIdx-th
column in the current row of the
result set.

16

LiteX LiteX++
Method(s) Description Sample code / Comments

int get_ColumnType(int
nColIdx) const

Returns type of nColIdx-th
column in the current row of the
result set.
Possible values are (values taken
from sqlite3.h header):

SQLITE_INTEGER = 1
SQLITE_FLOAT = 2
SQLITE_TEXT = 3
SQLITE_BLOB = 4
SQLITE_NULL = 5

switch(stmt.get_ColumnType(n))
{
case SQLITE_INTEGER:
tcout << _T("INTEGER: ") << stmt.get_ColumnInt(n) <<
endl;
break;
case SQLITE_FLOAT:
tcout << _T("FLOAT: ") << stmt.get_ColumnDouble(n) <<
endl;
break;
case SQLITE_TEXT:
tcout << _T("TEXT: ") << stmt.get_ColumnText(n) <<
endl;
break;
case SQLITE_BLOB:
tcout << _T("BLOB") << endl;
break;
case SQLITE_NULL:
tcout << _T("NULL") << endl;
break;
}

bool IsNull(int nColIdx)
const

Tests if nColIdx-th column in the
current row of the result set has
NULL value.

if (stmt.IsNull(n)) tcout << _T("NULL value") <<
endl;

Operators.

Operator Description Sample code / Comments

operator sqlite3_stmt*()
const

Access to sqlite3_stmt*
handle.

sqlite3_stmt* pStmt = stmt;

operator bool() const Test if object is prepared.

Library usage.
Most of library stuff is included in LiteX.hpp header file. Few functions are implemented in
LiteX.cpp file. To use this library in your project simply add these two files to your project and
use:

#include "LiteX.hpp"

directive in every module you want to use this library. There's no LIB nor DLL file. That's because
most of class methods are inline. All classes and functions are groupped into litex namespace.
Your project also must have access to sqlite3.h header from SQLite3 package.

All files you can find in LiteX package in LiteX_pp subdirectory. In this directory you can also
find simple console application that demonstrates how to use LiteX++ library.

This library works only on Windows platform. Porting to other platforms is possible and requires
text encoding routines change only.This library was tested with Visual Stusio C++ 6.0 (project files
included) and Visual Studio C++ .NET 2003/2005 compiler (only 2005 project files included).

Using LiteX++ together with LiteX Automation.
When you register LiteX Automation library information about location of sqlite3.dll library
is stored into registry. LiteX Automation library exports all native SQLite3 functions.

If you create application that uses dynamically linked native SQLite3 API you must put another
copy of sqlite3.dll into the directory where this application resides (best solution) or into
directory specified by PATH enviroment variable. This second version of DLL is unnecessary but
your application must read LiteX Automation library location from registry. You may by hand call
LoadLibray and then GetProcAddress functions but writing C++ applications you rather use
header file with function definitions (sqlite3.h) and static import library (sqlite3.lib).

17

LiteX LiteX++
If you specify sqlite3.dll in your C++ project as delay-loaded library (/DELAYLIB linker option)
you have control how to load delay-loaded DLLs by own notification hooks. LiteX++ library
currently implements such simple notification hook that reads LiteX Automation library location
and load this DLL if nessesary. This even works with Unicode version of LiteX Automation
(sqlite3u.dll). There are 3 functions into litex::delayload namespace:

Function Description Sample code

void set_handler();
Installs own delay-load DLL notification hook.When
sqlite3.dll library is needed it tries to locate LiteX
Automation library. If LiteX Automation library cannot
be found standard search procedure will be used.

using namespace litex;
delayload::set_handler();

HRESULT load_library(bool
bAutomation = true);

Loads sqlite3.dll library. If bAutomation is true
set_handler() is called before. You may call this
routine before any call to SQLite3 engine to make sure
that this engine is accessible.
0 means success, 0x8007007e is the most common
error code and means that sqlite3.dll library cannot
be found.
Warning: Don't call this routine from DllMain function!

using namespace litex;
delayload::load_library(true);

bool free_library();
Unloads previously loaded sqlite3(u).dll library
by load_library() function.
You don't need to call this function.

using namespace litex;
delayload::free_library();

These functions are defined only if _LITEX_WITH_DELAYLOAD macro is defined. Note that
using this functions makes only sense if you set sqlite3.dll library as delay-loaded DLL. Do
not use these functions if SQLite3 API is linked statically in your project. By using these functions
you can still use header and import library without calling LoadLibrary and GetProcAddress by
hand. All you need is to call set_handler() or load_library() function at the beginning
of your application (library) before any call to SQLite3 API. Look into LiteX_pp subdirectory to
see how this technique works.

LiteX ADO .NET.
This ADO .NET provider is my try to create ADO .NET provider for SQLite3 databases.
This projest is in very early development state. Currently there's no documentation for this provider
so you must look into sources.

This provider is creating using Visual Studio .NET 2005. This is C++ project (C++ with managed
extensions, not C#) using new syntax for managed extensions. Because new syntax is used it cannot
be compiled using Visual Studio .NET 2003 or any earlier version of Visual Studio. This is not pure
managed code - it uses SQLite3 native C API. This API may be linked statically or dynamically
(from DLL).

Sources and binaries of this provider you can find in LiteX_NET subdirectory of LiteX package.
litextest and litexgtest subdirectories of this package contains sample C# console and
GUI applications that demonstrates basic features of this provider.

Currently sources of LiteX ADO .NET are removed from source packages. They are available only
from SVN.

Last modification time: 2008-04-16 10:24.

18

http://www.sqlite.org/

	LiteX
	LiteX Automation.
	Automation objects.
	Connection.
	Properties.
	Methods.
	Events.

	Statement.
	Properties.
	Collections
	Methods.

	Rows.
	Row.

	Columns.
	Column.

	Parameters.
	Properties.
	Methods.
	Parameter.
	Properties.
	Methods.

	LargeInteger.

	Additional functions.
	sqlite3_register_blob_functions.
	sqlite3_register_unacc_functions.
	sqlite3_unregister_unacc_functions.

	Handling 64-bit integers.
	Binding 64-bit integers.
	Reading 64-bit values.

	Access mode abbreviations.
	Error codes.
	Building LiteX Automation from source.

	LiteX++
	Main features of LiteX++ library.
	Class reference.
	SQLiteException class.
	Methods.

	SQLiteRuntimeException class.
	Methods.

	SQLiteConnection class.
	Constructors.
	Methods.
	Operators.

	SQLiteStatement class.
	Constructors.
	Methods.
	Operators.

	Library usage.
	Using LiteX++ together with LiteX Automation.

	LiteX ADO .NET.

