SSA and Psi-SSA Representations

2009/04/15

François de Ferrière, Christophe Guillon

Francois.de-ferriere@st.com, christophe.guillon@st.com

The SSA form

- SSA form presentation outline:
 - SSA form definition
 - SSA form properties
 - SSA construction
 - SSA destruction
 - Optimisations over SSA form programs

SSA Form: Static Single Assignment

Every variable as exactly one static definition

not SSA

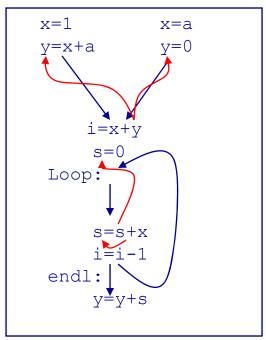
$$x_1=2$$
 $y=x_1+1$
 $x_2=3$
 $z=x_2+2$

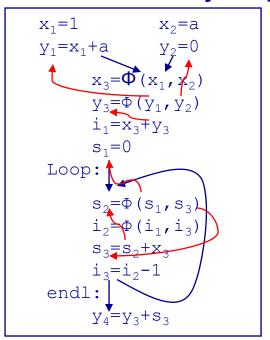
SSA

- It is a property of the program, not a new IR
- Motivation
 - Identify variable name and defining operation
 - Single reaching definition made explicit

SSA Property: Single Definition

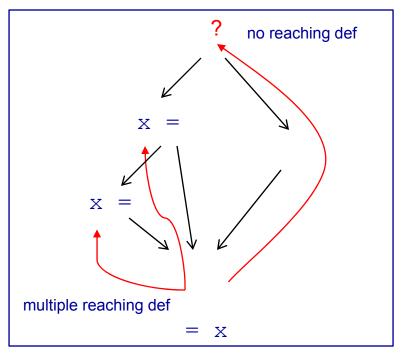
- Each assignment to a variable is given a unique name (at most one definition):
 - Simple renaming for straight-line code
 - Φ–nodes are introduced on control-flow join points

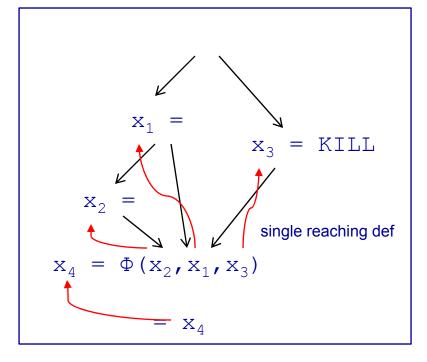




SSA Property: Reaching definition

- Each use has a reaching definition (at least one definition):
 - KILL nodes inserted to enforce definition





SSA

SSA Properties

- More compact representation than def-use chains
- Information on a variable is true everywhere (independent from the Control-Flow Graph)
- Every variable name as a known value
- Explicit merging of values
- Easy to follow use-def links, O(1) time and size
- Easy to maintain def-uses chains
- Easy to rename a definition (move elimination)
- Difficult to add new variables, and thus new definitions: a new complete SSA construct pass must be performed for these new variables.

Program Intermediate Representations

- Several kind and level of Intermediate Representation (IR)
- Program IR can have SSA form property, thanks to:
 - Φ–nodes for control flow merges
 - KILL-nodes for enforcing reaching definition
 - Special nodes in case of predicated definitions (ref to PSI-SSA)
 - Additional info to track pre-allocated variables (ref to out of-SSA)
 - Other for new IR…
- Alternatives when not easy for a given IR:
 - Consider just a subset of variables
 - For instance: do not consider pre-allocated variables
 - Consider just a sub region of the program
 - For instance: SSA for basic block only

SSA construction

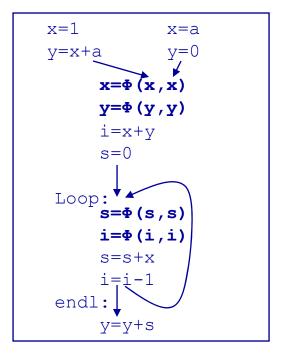
- There are multiple solutions to transform a program IR into SSA form. There are common ways.
- The set of nodes that need Φ–nodes for any variable V is the iterated dominance frontier DF₊(L), where L is the set of nodes with assignments to V
- Semi-Pruned SSA: No Φ–nodes for local variables (There is always a def before a use in a basic block)
- Pruned SSA: Uses live-analysis to insert Φ–nodes only where they are live

SSA Construction

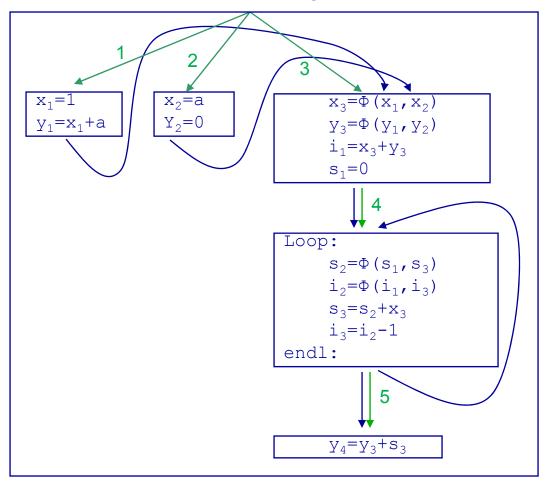
- For each variable V in the program
 - Find nodes where V is defined
 - Compute the iterated dominance frontier of these nodes
 - Place Φ–nodes on the iterated dominance frontier
- Rename the variable
 - Walk the dominator tree in preorder
 - Maintain a stack of renaming for each variable
 - Create new names on definitions, rename uses
 - Fill Φ–nodes arguments in successor nodes

SSA Contruction (Cont'd)

Φ-insertion



renaming



SSA Destruction: out of-SSA problem

Issues:

- Φ-nodes (pseudo ops) are not executable
- pre-allocation constraints (pseudo args) must be explicited

 Out of-SSA problem: get a functionally equivalent program without pseudo ops or pseudo args

SSA Destruction: Example

- Out of-SSA example:
 - From the original C code we get the IR in SSA form
 - Some transformations have been performed
 - Out-of SSA transforms the SSA form program into the executable form.

```
int f(int a, int b)
int x=a+b;
if (x>0)
{
    a=b;
}

x=g(a)
a=x+a;
return a;
```

C code

```
R1<sub>0</sub>,R2<sub>0</sub>=pseudo_entry

x_1=R1_0+R2_0

b_1=(x_1>0)

R1_1=R2_0

R1_2=\Phi(R1_1,R1_0)

x_2=pseudo_call\ g(R1_2)

x_3=x_2+R1_2

R16_3=X_3

pseuso_return\ R16_3
```

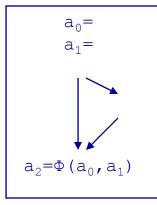
```
/* R1, R2 params */
x_1=R1+R2
b_1=(x_1>0)
R1=R2
R1_2=R1
call g /* R1=g(R1) */
<math>x_3=R1+R1_2
R1=X_3
return /* R1 */
```


SSA form Executable form

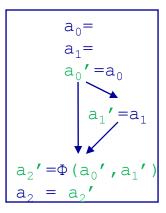
SSA Destruction: An approach

- Perform out of-SSA in two steps:
 - Convert to conventional SSA (CSSA)
 - Then perform renaming and discard pseudo ops
- Conventional SSA:
 - In this form, there is no interference between variables in a transitive closure of results and arguments of PHI operations
 - The result of the SSA construction, when no copy propagation is performed, is conventional
 - Most SSA transformations, such as copy propagation or code motion, may create non-conventional SSA

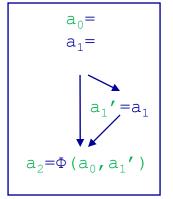
SSA Destruction: CSSA example



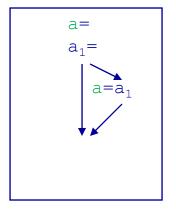
CSSA



CSSA (also)



Executable



- There are several algorithms to convert SSA to Conventional SSA:
 - Some are wrong or do not account for IR specificities
 - Some trivial algorithms insert lot of copies
 - Advanced ones coalesce these copies or avoid their insertion
- Alternative: maintain CSSA form all along the IR
 - Very hard and bug prone: do not rely on this

Optimizations over SSA form programs

- Most standard algorithms have an SSA version, usually more efficient:
 - use-def-uses chains are maintained along transformations
 - Information on each variable is valid globally
 - Dominance property simplify algorithmic complexity

Examples:

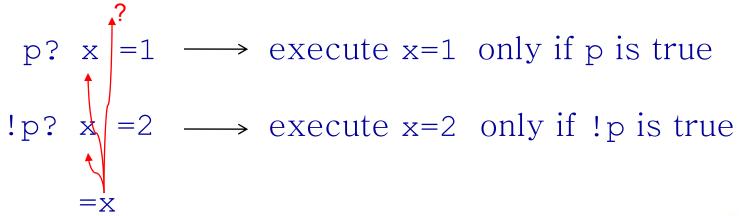
- Copy Propagation: straight-forward during SSA renaming phase
- Sparse Conditional Constant Propagation and other data flow analysis: use-defuses chains and dominance property.
- Dead-Code Elimination: mark side effects ops and recurse on use defs links
- Detection of loop induction variables and determination of loop trip count is quite easy
- Partial-redundancy elimination: still quite hard but more easy and efficient
- Register allocation: chordal interference graph property makes coloring polynomial

The Psi-SSA form

- Psi-SSA form presentation outline:
 - Motivation
 - Definition
 - Properties
 - Benefits
 - Construction
 - Transformations
 - Destruction
- Conclusion

Motivation for Psi-SSA

- Motivation:
 - Enable SSA form property at machine code level
- Why?
 - Run all the efficient SSA based algorithms at this level (accuracy)
- One of the issues:
 - Target processors with full or partial support for predication
 - We can not statically determine anymore reaching definitions!
- Predicated instructions are "optional definitions", example:



Definition of Psi-SSA

- Psi-SSA is a SSA form (Single Static Assignment)
- Psi-SSA adds support for predicated instructions
 - introduce a new ψ pseudo-op to keep SSA property

if (p)
$$a_{1} = 1$$
else
$$a_{2} = -1$$

$$a_{3} = \Phi(a_{1}, a_{2})$$
if (q)
$$b_{1} = 0$$

$$b_{2} = \Phi(a_{3}, b_{1})$$

$$b_{3} = a_{3} + b_{2}$$

p?
$$a_1 = 1$$

!p? $a_2 = -1$
 $a_3 = \psi(p?a_1, !p?a_2)$

q? $b_1 = 0$
 $b_2 = \psi(a_3, q?b_1)$
 $b_3 = a_3 + b_2$

SSA representation

Psi-SSA representation

Properties of Psi-SSA

- A Psi operation merges values defined on different predicates
- Predicates on definitions are ignored
- The result of a Psi operation is a non-predicated definition
- The execution of a Psi operation returns the value of the rightmost variable whose predicate is true at runtime

$$a_1 = 1$$

 $p? a_2 = -1$
 $a_3 = \psi(1?a_1, p?a_2)$
 $q? b_1 = 0$
 $b_2 = \psi(1?a_1, p?a_2, q?b_1)$
 $b_3 = a_3 + b_2$

Properties of Psi-SSA (cont'd)

- A predicate is associated with each argument
 - Allow for speculation of predicated definitions
 - Provide support for partial predication
- Predicate domains need not be disjoint
 - Several predicates may be true at the same time.
 - The order of the arguments in a Psi operation is significant

$$a_1 = 1$$

 $p? a_2 = -1$
 $a_3 = \psi(1?a_1, p?a_2)$
 $q? b_1 = 0$
 $b_2 = \psi(1?a_1, p?a_2, q?b_1)$
 $b_3 = a_3 + b_2$

Benefits of Psi-SSA

- Easy to implement on top of an SSA representation
- No penalty if no predicated operation
- More flexibility in optimization ordering for predicated instruction sets
 - SSA algorithms are easy to adapt to the Psi-SSA representation (just add the support for the new pseudo op)
 - If-Conversion under SSA
- Specific optimizations on predicated code
 - Predicate promotion

Benefits of Psi-SSA (cont'd)

- Standard SSA algorithms can be used on Psi-SSA
 - Predicated instructions are treated as unconditional
 - New rules have to be defined on Psi operations
 - constant propagation, dead code elimination, global value numbering have been adapted to this representation
- Example: Constant propagation

$$a_1 = 1$$
 -> 1
p? $a_2 = a_1 + 1$ -> 2
!p? $a_3 = 2$ -> 2
 $a_4 = \psi(p?a_2, !p?a_3)$ -> 2

Construction of Psi-SSA

- During the SSA construction
 - Insertion of Psi operation after predicated definitions

$$a_1 = 0$$

p? $a_2 = 1$
 $a_3 = \psi(1?a_1, p?a_2)$

- While in SSA form by an if-conversion algorithm
 - Transformation of Phi operations into Psi operations

$$a_1 = 0$$
if (p)
 $a_2 = 1$
 $a_3 = \Phi(a_1, a_2)$

$$a_1 = 0$$
 $p? a_2 = 1$
 $a_3 = \psi(1?a_1, p?a_2)$

Transformations on Psi-SSA

- Some transformations on Psi operations:
 - Psi-inlining

$$x = \psi(p?a,q?b)$$

 $y = \psi(p|q?x,r?c)$
 $-> y = \psi(p?a,q?b,r?c)$

Psi-reduction

$$x = \psi(p?a,q?b,p?c)$$

-> $x = \psi(q?b,p?c)$

- Psi-projection

$$x = \psi(p?a,q?b) /* pnq = \emptyset */$$
 $-> x_1 = \psi(p?a)$
 $p? z = x /* single use of x*/$
 $-> p? z = x_1 //z = a$

- Psi-promotion

$$x = \psi(p?a,q?b)$$

-> $x = \psi(1?a,q?b)$

Destruction of Psi-SSA

- Variables connected through a Psi operation must be renamed into a single variable, but:
 - Code motion may have changed the order in which predicated definitions occur
 - Operation speculation may have assigned a different predicate on a variable's definition and on its use in a Psi operation
 - Copy folding may have introduced interferences between variables in Psi operations

```
p? a_2 = 1
a_1 = 0
a_3 = \psi(1?a_1, p?a_2)
a_1 = 0
a_2 = 1
a_3 = \psi(1?a_1, q?a_2)
```

$$a_1 = 0$$
 $p? a_2 = 1$
 $a_3 = \psi(1?a_1, p?a_2)$
 $q? b_2 = -1$
 $b_3 = \psi(1?a_3, q?b_2)$
 $c_1 = a_3 + b_3$

Destruction of Psi-SSA (cont'd)

Implemented as two steps above the out of-SSA algorithm

A Psi-Normalize step

- Restores the order of predicated definitions
- Uses the same predicate on a variable's definition and on its use in a Psi operation
- A Psi-congruence step
 - Insert copies to remove interferences in psi-congruence classes
 - Uses a special definition for liveness on normalized Psi operations

p?
$$a_1 = q$$
? $a_2 = \psi(p?a_1, q?a_2)$

Destruction of Psi-SSA (cont'd)

- Predicated copies are generated to repair non-normalized
 Psi operations and interferences between Psi arguments
- Interferences between Psi arguments must also take into account interferences on Phi operations
- A simple Predicate Query System is used to eliminate false interferences on disjoint predicates

Conclusion

- Algorithms to build, optimize and deconstruct the Psi-SSA representation are well defined
- The Psi-SSA representation has proven to be a very effective representation to applying transformations on predicated code for our target processors
- Standard SSA algorithms are easy to adapt to Psi-SSA
- The Psi-SSA representation gives more flexibility in the ordering of optimizations in the compiler back-end

References

- Compilers using SSA
 - Middle-end: gcc, open64
 - Machine level: open64 (at ST), LAO (at ST), Ilvm, HotSpot
- Our contributions to SSA/Psi-SSA representation:
 - "Optimizing Translation Out of SSA Using Renaming Constraints"
 F. de Ferrière, C.Guillon, F.Rastello CGO-2004
 - "Revisiting Out of SSA Translation for Correctness, Efficiency and Speed"
 B.Boissinot, A.Darte, B.Dupont de Dinechin, C.Guillon, F.Rastello CGO-2009
 - "Efficient static single assignment form for predication"
 A.Stouchinin, F. de Ferrière Micro-34
 - "Improvements to the Psi-SSA Representation"
 F. de Ferrière Scopes 2007

